Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 14(30): 21901-21914, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38989248

ABSTRACT

Despite their efficacy in eliminating undesired crops and increasing yield, a range of environmental issues and chronic ailments arise when hazardous chemicals are highly concentrated in wastewater and then deposited into rivers, lakes or the air. Hence, the detection of these chemicals has become a cause of concern for researchers and scientists because they contribute largely to serious health problems. Herein, the potential of newly tailored nanomaterials for the detection of 2,4 dichlorophenoxyacetic acid (DCP) in humans was examined. The theoretical approach adopted in this work is within the framework of density functional theory (DFT) using the DFT/B3LYP-D3/def2SVP computational method. The reduction in the energy gap upon adsorption is indicative of good adsorbing properties. A chemisorption phenomenon was observed for DCP-GP/AlN. However, in most cases, physisorption occurs. Interestingly, the noncovalent nature of the interactions was observed in all the cases, indicating that the material was good. The green colour of the 3D RDG maps implies a significant intermolecular interaction. Sensor mechanisms confirmed that the nanocomposite materials exhibit excellent detection potential for DCP through greater charge transfer, better sensitivity, conductivity, and enhanced adsorption capacity. The potential of nanocomposite materials as stable and promising detectors for DCP pollutants was confirmed in this study. Hence, the studied GP/AlN nanocomposite material can be used in the engineering of future sensor devices for detecting DCP.

2.
RSC Adv ; 14(8): 5351-5369, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38348297

ABSTRACT

Owing to the fact that the detection limit of already existing sensor-devices is below 100% efficiency, the use of 3D nanomaterials as detectors and sensors for various pollutants has attracted interest from researchers in this field. Therefore, the sensing potentials of bare and the impact of Cu-group transition metal (Cu, Ag, Au)-functionalized silicon carbide nanotube (SiCNT) nanostructured surfaces were examined towards the efficient detection of NO2 gas in the atmosphere. All computational calculations were carried out using the density functional theory (DFT) electronic structure method at the B3LYP-D3(BJ)/def2svp level of theory. The mechanistic results showed that the Cu-functionalized silicon carbide nanotube surface possesses the greatest adsorption energies of -3.780 and -2.925 eV, corresponding to the adsorption at the o-site and n-site, respectively. Furthermore, the lowest energy gap of 2.095 eV for the Cu-functionalized surface indicates that adsorption at the o-site is the most stable. The stability of both adsorption sites on the Cu-functionalized surface was attributed to the small ellipticity (ε) values obtained. Sensor mechanisms confirmed that among the surfaces, the Cu-functionalized surface exhibited the best sensing properties, including sensitivity, conductivity, and enhanced adsorption capacity. Hence, the Cu-functionalized SiCNT can be considered a promising choice as a gas sensor material.

SELECTION OF CITATIONS
SEARCH DETAIL
...