Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 47
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38928124

ABSTRACT

Yield in many crops is affected by abscission during the early stages of fruitlet development. The reasons for fruitlet abscission are often unclear but they may include genetic factors because, in some crops, self-pollinated fruitlets are more likely to abscise than cross-pollinated fruitlets. Pollen parentage can also affect final fruit size and fruit quality. Here, we aimed to understand the effects of pollen parentage on fruitlet retention and nut quality in orchards of macadamia (Macadamia integrifolia Maiden & Betche). We identified the pollen parent of macadamia 'cultivar '816' embryos by analysing single nucleotide polymorphisms (SNPs) in their DNA using customised MassARRAY and Single Allele Base Extension Reaction (SABER) methods. This allowed us to determine the proportions of self-fertilised and cross-fertilised progeny during premature fruit drop at 6 weeks and 10 weeks after peak anthesis, as well as at nut maturity. We determined how pollen parentage affected nut-in-shell (NIS) mass, kernel mass, kernel recovery, and oil concentration. Macadamia trees retained cross-fertilised fruitlets rather than self-fertilised fruitlets. The percentage of progeny that were cross-fertilised increased from 6% at 6 weeks after peak anthesis to 97% at nut maturity, with each tree producing on average 22 self-fertilised nuts and 881 cross-fertilised nuts. Three of the four cross-pollen parents provided fruit with significantly higher NIS mass, kernel mass, or kernel recovery than the few remaining self-fertilised fruit. Fruit that were cross-fertilised by '842', 'A4', or 'A203' had 16-29% higher NIS mass and 24-44% higher kernel mass than self-fertilised fruit. Nuts that were cross-fertilised by 'A4' or 'A203' also had 5% or 6% higher kernel recovery, worth approximately $US460-540 more per ton for growers than self-fertilised nuts. The highly selective abscission of self-fertilised fruitlets and the lower nut quality of self-fertilised fruit highlight the critical importance of cross-pollination for macadamia productivity.


Subject(s)
Fruit , Macadamia , Polymorphism, Single Nucleotide , Macadamia/genetics , Fruit/genetics , Fruit/growth & development , Seeds/genetics , Seeds/growth & development , Self-Fertilization , Pollen/genetics , Pollen/growth & development , Pollen/drug effects , DNA, Plant/genetics , Nuts/genetics , Nuts/growth & development , Pollination
2.
Genome Biol Evol ; 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-38913571

ABSTRACT

Dingoes come from an ancient canid lineage that originated in East Asia around 8000-11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequence data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROH)-indicators of inbreeding-are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.

3.
J Immunother Cancer ; 12(4)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38658031

ABSTRACT

BACKGROUND: Tigilanol tiglate (TT) is a protein kinase C (PKC)/C1 domain activator currently being developed as an intralesional agent for the treatment of various (sub)cutaneous malignancies. Previous work has shown that intratumoral (I.T.) injection of TT causes vascular disruption with concomitant tumor ablation in several preclinical models of cancer, in addition to various (sub)cutaneous tumors presenting in the veterinary clinic. TT has completed Phase I dose escalation trials, with some patients showing signs of abscopal effects. However, the exact molecular details underpinning its mechanism of action (MoA), together with its immunotherapeutic potential in oncology remain unclear. METHODS: A combination of microscopy, luciferase assays, immunofluorescence, immunoblotting, subcellular fractionation, intracellular ATP assays, phagocytosis assays and mixed lymphocyte reactions were used to probe the MoA of TT in vitro. In vivo studies with TT used MM649 xenograft, CT-26 and immune checkpoint inhibitor refractory B16-F10-OVA tumor bearing mice, the latter with or without anti-programmed cell death 1 (PD-1)/anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) mAb treatment. The effect of TT at injected and non-injected tumors was also assessed. RESULTS: Here, we show that TT induces the death of endothelial and cancer cells at therapeutically relevant concentrations via a caspase/gasdermin E-dependent pyroptopic pathway. At therapeutic doses, our data demonstrate that TT acts as a lipotoxin, binding to and promoting mitochondrial/endoplasmic reticulum (ER) dysfunction (leading to unfolded protein responsemt/ER upregulation) with subsequent ATP depletion, organelle swelling, caspase activation, gasdermin E cleavage and induction of terminal necrosis. Consistent with binding to ER membranes, we found that TT treatment promoted activation of the integrated stress response together with the release/externalization of damage-associated molecular patterns (HMGB1, ATP, calreticulin) from cancer cells in vitro and in vivo, characteristics indicative of immunogenic cell death (ICD). Confirmation of ICD in vivo was obtained through vaccination and rechallenge experiments using CT-26 colon carcinoma tumor bearing mice. Furthermore, TT also reduced tumor volume, induced immune cell infiltration, as well as improved survival in B16-F10-OVA tumor bearing mice when combined with immune checkpoint blockade. CONCLUSIONS: These data demonstrate that TT is an oncolytic small molecule with multiple targets and confirms that cell death induced by this compound has the potential to augment antitumor responses to immunotherapy.


Subject(s)
Immune Checkpoint Inhibitors , Immunogenic Cell Death , Animals , Mice , Immunogenic Cell Death/drug effects , Humans , Immune Checkpoint Inhibitors/pharmacology , Immune Checkpoint Inhibitors/therapeutic use , Cell Line, Tumor , Female , Xenograft Model Antitumor Assays , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/therapy
4.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-37745583

ABSTRACT

Dingoes come from an ancient canid lineage that originated in East Asia around 8000-11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequencing data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROH) - indicators of inbreeding - are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.

5.
Ecol Evol ; 13(9): e10525, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37732287

ABSTRACT

Dingoes arrived in Australia during the mid-Holocene and are the top-order terrestrial predator on the continent. Although dingoes subsequently spread across the continent, the initial founding population(s) could have been small. We investigated this hypothesis by sequencing the whole genomes of three dingoes and also obtaining the genome data from nine additional dingoes and 56 canines, including wolves, village dogs and breed dogs, and examined the signatures of bottlenecks and founder effects. We found that the nucleotide diversity of dingoes was low, 36% less than highly inbred breed dogs and 3.3 times lower than wolves. The number of runs of homozygosity (RoH) segments in dingoes was 1.6-4.7 times higher than in other canines. While examining deleterious mutational load, we observed that dingoes carried elevated ratios of nonsynonymous-to-synonymous diversities, significantly higher numbers of homozygous deleterious Single Nucleotide Variants (SNVs), and increased numbers of loss of function SNVs, compared to breed dogs, village dogs, and wolves. Our findings can be explained by bottlenecks and founder effects during the establishment of dingoes in mainland Australia. These findings highlight the need for conservation-based management of dingoes and the need for wildlife managers to be cognisant of these findings when considering the use of lethal control measures across the landscape.

6.
PLoS One ; 17(9): e0273457, 2022.
Article in English | MEDLINE | ID: mdl-36099262

ABSTRACT

Cross-pollination can increase fruit production in both self-incompatible and self-compatible fruit crops. However, it is often unclear what proportions of the fruit crop result from cross-pollination. We quantified the proportion of cross-pollinated seeds and the proportion of fertilised seeds in two strawberry cultivars, Red Rhapsody and Sundrench, at increasing distances from a cross-pollen source. We assessed whether fully self-pollinated fruit and partly cross-pollinated fruit differed in fruit size, colour, firmness, Brix and acidity. We also assessed whether fruit size and quality were affected by the number or percentage of fertilised seeds. Almost all seeds of both cultivars resulted from self-pollination (~98%), even at only 1 m from a cross-pollen source. Distance from a cross-pollen source did not affect the proportion of partly cross-pollinated fruit or the proportion of cross-pollinated seeds per fruit. The mass and diameter of fully self-pollinated Sundrench fruit, and the redness and Brix of fully self-pollinated Red Rhapsody fruit, were higher than partly cross-pollinated fruit. Fruit mass, length and diameter increased, and acidity decreased, with increasing numbers of fertilised seeds in both cultivars. Fruit mass also increased with the percentage of fertilised seeds. Our results show that cross-pollination was not required for Red Rhapsody and Sundrench fruit production, and that cross-pollination was a rare occurrence even close to cross pollen source. Self-pollen deposition on stigmas is required to maximise the number of fertilised seeds, and consequently fruit size and quality. Our research indicates that bees improve strawberry fruit size by increasing the number of stigmas that receive pollen. Our results suggest that placing bee hives on strawberry farms during flowering and establishing nearby pollinator habitat to support wild pollinators could improve strawberry yield and fruit quality.


Subject(s)
Fragaria , Animals , Bees , Fruit , Paternity , Pollination , Seeds
7.
Antioxidants (Basel) ; 11(8)2022 Aug 19.
Article in English | MEDLINE | ID: mdl-36009323

ABSTRACT

Bioactivity-guided fractionation was used to isolate two compounds, tomentosenol A (1) and torellianone A (2), from a cerumen extract from Tetragonula carbonaria. The anti-fibrotic activity of these compounds was examined using human cultured neonatal foreskin fibroblasts (NFF) and immortalised keratinocytes (HaCaTs). Tomentosenol A (1), inhibited NFF and HaCaT cell proliferation and prevented NFF and HaCaT scratch wound repopulation at 12.5-25 µM concentrations. These inhibitory effects were associated with reduced cell viability, determined by tetrazolium dye (MTT) and sulforhodamine B (SRB) assays. Compound 1 further inhibited transforming growth factor-ß1 (TGF-ß1)-stimulated, NFF-myofibroblast differentiation and soluble collagen production; and was an effective scavenger of the model oxidant, 2,2-diphenyl-1-picrylhydrazyl (DPPH·), with an EC50 value of 44.7 ± 3.1 µM. These findings reveal significant anti-fibrotic potential for cerumen-derived tomentosenol A (1).

8.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807225

ABSTRACT

Tigilanol tiglate (EBC-46) is a small-molecule natural product under development for the treatment of cancers in humans and companion animals. The drug is currently produced by purification from the Australian rainforest tree Fontainea picrosperma (Euphorbiaceae). As part of a selective-breeding program to increase EBC-46 yield from F. picrosperma plantations, we investigated potential gene biomarkers associated with biosynthesis of EBC-46. Initially, we identified individual plants that were either high (>0.039%) or low EBC-46 (<0.008%) producers, then assessed their differentially expressed genes within the leaves and roots of these two groups by quantitative RNA sequencing. Compared to low EBC-46 producers, high-EBC-46-producing plants were found to have 145 upregulated genes and 101 downregulated genes in leaves and 53 upregulated genes and 82 downregulated genes in roots. Most of these genes were functionally associated with defence, transport, and biosynthesis. Genes identified as expressed exclusively in either the high or low EBC-46-producing plants were further validated by quantitative PCR, showing that cytochrome P450 94C1 in leaves and early response dehydration 7.1 and 2-alkenal reductase in roots were consistently and significantly upregulated in high-EBC-46 producers. In summary, this study has identified biomarker genes that may be used in the selective breeding of F. picrosperma.


Subject(s)
Diterpenes , Euphorbiaceae , Genetic Markers , Diterpenes/chemistry , Esters/chemistry , Euphorbiaceae/chemistry , Euphorbiaceae/genetics , Gene Expression Regulation, Plant , Genes, Plant , Plant Breeding , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Roots/chemistry , Plant Roots/genetics
9.
PLoS One ; 17(6): e0269485, 2022.
Article in English | MEDLINE | ID: mdl-35657926

ABSTRACT

Pollen-parent effects on fruit size and quality have been found previously among competing self-pollinated and cross-pollinated fruit on the same Redlands Joy strawberry plant. These effects occur independently of the percentage of fertilized seeds on the fruit, but the expression of these effects on fruit size and some aspects of quality are greatest when calcium is in shortest supply. Here, we aimed to clarify at what developmental stages the self-pollinated and cross-pollinated fruit diverge in size and quality and whether differences between self-pollinated and cross-pollinated fruit are due to early differences in nutrient accumulation. Fruit were harvested at 1, 2 and 3 weeks after hand-pollination and at full ripeness, approximately 4 weeks after hand-pollination. We measured fruit mass, length, diameter, colour, and the concentrations of aluminium, boron, calcium, copper, iron, nitrogen, magnesium, manganese, sodium, phospho-rous, potassium and zinc. Temporary increases in fruit mass, length or diameter due to cross-pollination were evident at 1 or 2 weeks after pollination. Consistent increases in size and skin darkness from cross-pollination emerged in the final week of fruit development. We found little evidence that self-pollinated and cross-pollinated fruit differed in mineral nutrient accumulation at any stage of fruit development. The results demonstrate that cross-pollination effects on strawberry fruit size are evident briefly during early fruit growth but emerge mainly during the final week of fruit development. The effects of cross-pollination on fruit size are not the result of early differences in mineral nutrient accumulation between self-pollinated and cross-pollinated fruit.


Subject(s)
Fragaria , Biomass , Calcium/metabolism , Fruit , Minerals/metabolism , Nutrients , Pollination
10.
Ann Bot ; 129(2): 135-146, 2022 01 28.
Article in English | MEDLINE | ID: mdl-34473241

ABSTRACT

BACKGROUND AND AIMS: Pollen limitation is most prevalent among bee-pollinated plants, self-incompatible plants and tropical plants. However, we have very little understanding of the extent to which pollen limitation affects fruit set in mass-flowering trees despite tree crops accounting for at least 600 million tons of the 9200 million tons of annual global food production. METHODS: We determined the extent of pollen limitation in a bee-pollinated, partially self-incompatible, subtropical tree by hand cross-pollinating the majority of flowers on mass-flowering macadamia (Macadamia integrifolia) trees that produce about 200 000-400 000 flowers. We measured tree yield and kernel quality and estimated final fruit set. We genotyped individual kernels by MassARRAY to determine levels of outcrossing in orchards and assess paternity effects on nut quality. KEY RESULTS: Macadamia trees were pollen-limited. Supplementary cross-pollination increased nut-in-shell yield, kernel yield and fruit set by as much as 97, 109 and 92 %, respectively. The extent of pollen limitation depended upon the proximity of experimental trees to trees of another cultivar because macadamia trees were highly outcrossing. Between 84 and 100 % of fruit arose from cross-pollination, even at 200 m (25 rows) from orchard blocks of another cultivar. Large variations in nut-in-shell mass, kernel mass, kernel recovery and kernel oil concentration were related to differences in fruit paternity, including between self-pollinated and cross-pollinated fruit, thus demonstrating pollen-parent effects on fruit quality (i.e. xenia). CONCLUSIONS: This study is the first to demonstrate pollen limitation in a mass-flowering tree. Improved pollination led to increased kernel yield of 0.31-0.59 tons ha-1, which equates currently to higher farm-gate income of approximately $US3720-$US7080 ha-1. The heavy reliance of macadamia flowers on cross-pollination and the strong xenia effects on kernel mass demonstrate the high value that pollination services can provide to food production.


Subject(s)
Proteaceae , Trees , Animals , Flowers , Macadamia/genetics , Pollen , Pollination , Reproduction
11.
Sci Rep ; 11(1): 20043, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34625603

ABSTRACT

Cross-pollination can improve fruit yield, fruit size and nutritional quality of many food crops. However, we rarely understand what proportions of the crop result from self- or cross-pollination, how cross-pollination affects crop quality, and how far pollen is transported by pollinators. Management strategies to improve pollination services are consequently not optimal for many crops. We utilised a series of SNP markers, unique for each cultivar of avocado, to quantify proportions of self- and cross-paternity in fruit of Hass avocado at increasing distances from cross-pollen sources. We assessed whether distance from a cross-pollen source determined the proportions of self-pollinated and cross-pollinated fruit, and evaluated how self- and cross-paternity affected fruit size and nutritional quality. Avocado fruit production resulted from both self- and cross-pollination in cultivar Hass in Queensland, Australia. Cross-pollination levels decreased with increasing distance from a cross-pollen source, from 63% in the row adjacent to another cultivar to 25% in the middle of a single-cultivar block, suggesting that pollen transport was limited across orchard rows. Limited pollen transport did not affect fruit size or quality in Hass avocados as xenia effects of a Shepard polliniser on size and nutritional quality were minor.


Subject(s)
Fruit/chemistry , Genetic Markers , Persea/physiology , Pollen/physiology , Pollination , Polymorphism, Single Nucleotide , Australia , Persea/genetics , Persea/growth & development , Reproduction , Seeds/genetics , Seeds/growth & development , Seeds/physiology
12.
PLoS One ; 16(9): e0256964, 2021.
Article in English | MEDLINE | ID: mdl-34492053

ABSTRACT

Cross-pollination affects the fruit characteristics of many crops but the effects of cross-pollination on fruit quality of strawberry (Fragaria × ananassa Duch.) are poorly known. This study determined how cross-pollination affects fruit quality of the strawberry cultivar, Redlands Joy, under controlled environment conditions. Plants were allocated to one of four treatments, with all flowers on each plant receiving either: (1) unassisted self-pollination (Autogamy); (2) hand-pollination with Redlands Joy pollen (Self); (3) hand-pollination with cross-pollen from a small-fruited cultivar (Sugarbaby); or (4) hand-pollination with cross-pollen from a large-fruited cultivar (Rubygem). Cross-pollination did not significantly affect plant yield or fruit mass, size, shape, firmness or shelf life. However, cross-pollination affected fruit colour and taste attributes. Cross-pollinated fruit were 3%-5% darker than self-pollinated fruit. They also had 26%-34% lower acidity and 43%-58% higher Brix:acid ratio. Cross-pollination by Sugarbaby increased fruit P, K, Ca, Fe and Mn, but decreased B, Cu and Zn, concentrations. Cross-pollination by Rubygem increased fruit Mn, but decreased K and Na, concentrations and reduced shelf life. Fruit mass, length, diameter and firmness within all treatments increased with increasing numbers of fertilized seeds per fruit. Hand self-pollinated fruit had a higher percentage of fertilized seeds than fruit arising from autogamy and they were also darker, redder, firmer, and had a longer shelf life, higher protein concentration, and lower Al and Na concentrations. The results indicate that strawberry fruit quality can be affected by both the source of pollen and the number of stigmas pollinated.


Subject(s)
Fertilization/genetics , Fragaria/growth & development , Fruit/genetics , Reproduction/genetics , Acids/chemistry , Color , Crops, Agricultural , Fertilization/physiology , Flowers/genetics , Flowers/growth & development , Food Storage , Fragaria/genetics , Fruit/growth & development , Pollen/genetics , Pollination/genetics , Reproduction/physiology , Seeds/genetics , Seeds/growth & development
13.
Ecol Evol ; 11(15): 10468-10482, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34367589

ABSTRACT

Flowering plants in tropical rainforests rely heavily on pollen vectors for successful reproduction. Research into pollination systems in tropical rainforests is dominated by canopy species, while subcanopy plant-pollinator interactions remain under-represented. The microclimate beneath the rainforest canopy is characterized by low light levels and is markedly different from the canopy environment that receives more light energy.We studied the floral attractants and floral visitors of a dioecious, subcanopy tree, Fontainea picrosperma (Euphorbiaceae), in the Wet Tropics bioregion of northern Queensland, Australia.We found that wind pollination is rare and male and female flowers do not produce nectar. Female flowers are likely pollinated due to their perceptual similarity to pollen-offering male flowers. Female flowers had the same scent profile as male flowers, and floral scent was an important floral attractant that acted to regulate pollinator behavior. The two most abundant scent compounds present in the floral bouquet were benzyl alcohol and 4-oxoisophorone. These compounds are ubiquitous in nature and are known to attract a wide variety of insects. Both day-time and night-time pollinators contributed to successful pollen deposition on the stigma, and diurnal flower visitors were identified from several orders of insects including beetles, flies, predatory wasps, and thrips. Fontainea picrosperma is therefore likely to be pollinated by a diverse array of small insects.Synthesis. Our data indicate that F. picrosperma has a generalist, entomophilous pollination syndrome. The rainforest subcanopy is a distinctive environment characterized by low light levels, low or turbulent wind speeds, and relatively high humidity. Female flowers of F. picrosperma exhibit cost-saving strategies by not producing nectar and mimicking the smell of reward-offering male flowers. Insects opportunistically forage on or inhabit flowers, and pollination occurs from a pool of small insects with low energy requirements that are found beneath the rainforest canopy.

14.
Appl Plant Sci ; 9(6): e11440, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34268019

ABSTRACT

PREMISE: Progeny of avocado (Persea americana) are highly variable due to high levels of heterozygosity. Breeding programs need molecular resources to allow the assessment of genetic differences and the selection of genotypes. Polymorphisms that uniquely identify different avocado cultivars provide a valuable tool to accelerate avocado research and development, including, for example, genotype selection. METHODS: A double-digest restriction site-associated DNA sequencing (ddRADseq) approach was used to screen 10 avocado cultivars for single-nucleotide polymorphisms (SNPs). The fragments were size selected with Blue Pippin and PCR using universal Illumina primers, and catalog tags were then created with de novo alignment using Stacks software. Catalog tags were tabulated and filtered to identify alleles unique to each cultivar. RESULTS: A total of 104 million sequences were collected, and 52 homozygous SNPs were identified that uniquely distinguished nine avocado cultivars. The cultivars Carmen Hass and Hass have a strong genetic similarity and no homozygous SNPs distinguishing these cultivars could be identified; therefore, both cultivars were grouped together. DISCUSSION: The resource described here for cultivars of P. americana presents a new and significant molecular resource that can enable targeted genotype selection, paternity analysis, germplasm genotyping, pollination dynamics investigation, and crop improvement.

15.
BMC Plant Biol ; 21(1): 191, 2021 Apr 20.
Article in English | MEDLINE | ID: mdl-33879061

ABSTRACT

BACKGROUND: Cytochrome P450s (P450s) are enzymes that play critical roles in the biosynthesis of physiologically important compounds across all organisms. Although they have been characterised in a large number of plant species, no information relating to these enzymes are available from the genus Fontainea (family Euphorbiaceae). Fontainea is significant as the genus includes species that produce medicinally significant epoxy-tigliane natural products, one of which has been approved as an anti-cancer therapeutic. RESULTS: A comparative species leaf metabolome analysis showed that Fontainea species possess a chemical profile different from various other plant species. The diversity and expression profiles of Fontainea P450s were investigated from leaf and root tissue. A total of 103 and 123 full-length P450 genes in Fontainea picrosperma and Fontainea venosa, respectively (and a further 127/125 partial-length) that were phylogenetically classified into clans, families and subfamilies. The majority of P450 identified are most active within root tissue (66.2% F. picrosperma, 65.0% F. venosa). Representatives within the CYP71D and CYP726A were identified in Fontainea that are excellent candidates for diterpenoid synthesis, of which CYP726A1, CYP726A2 and CYP71D1 appear to be exclusive to Fontainea species and were significantly more highly expressed in root tissue compared to leaf tissue. CONCLUSION: This study presents a comprehensive overview of the P450 gene family in Fontainea that may provide important insights into the biosynthesis of the medicinally significant epoxy-tigliane diterpenes found within the genus.


Subject(s)
Cytochrome P-450 Enzyme System/genetics , Diterpenes/metabolism , Euphorbiaceae/genetics , Genes, Plant , Plant Proteins/genetics , Cytochrome P-450 Enzyme System/metabolism , Euphorbiaceae/enzymology , Euphorbiaceae/metabolism , Multigene Family , Plant Proteins/metabolism
16.
J Invertebr Pathol ; 180: 107540, 2021 03.
Article in English | MEDLINE | ID: mdl-33516722

ABSTRACT

Chalkbrood infection caused by the fungus Ascosphaera apis currently has a significant impact on Australia's apicultural industry. We investigated the genetic variation of A. apis and colony and apiary level conditions to determine if an emerging, more virulent strain or specific conditions were responsible for the prevalence of the disease. We identified six genetically distinct strains of A. apis, four have been reported elsewhere and two are unique to Australia. Colonies and individual larvae were found to be infected with multiple strains of A. apis, neither individual strains, combinations of strains, or obvious colony or apiary characteristics were found to be predictive of hive infection levels. These results suggest that host genotype plays an important role in colony level resistance to chalkbrood infection in Australia.


Subject(s)
Bees/microbiology , Genetic Variation , Onygenales/genetics , Animals , Australia , Beekeeping , Bees/growth & development , Larva/growth & development , Larva/microbiology
17.
Ecol Evol ; 10(20): 11565-11578, 2020 Oct.
Article in English | MEDLINE | ID: mdl-33144984

ABSTRACT

Since outbreaks of the invasive blue gum chalcids Leptocybe spp. began, the genus Megastigmus (Hymenoptera: Megastigmidae) has been increasingly studied as containing potential biocontrol agents against these pests. Megastigmus species have been collected and described from Australia, the presumed origin of Leptocybe spp., with M. zvimendeli and M. lawsoni reported as Leptocybe spp. parasitoids established outside of Australia. Parasitic Megastigmus have been reported to occur locally in the Neotropics, Afrotropic, Palearctic, and Indomalaya biogeographic realms, and in many cases described as new to science. However, molecular tools have not been used in studying parasitic Megastigmus, and difficulties in morphological taxonomy have compromised further understanding of eucalypt-associated Megastigmus as well as the Megastigmus-Leptocybe association. In this study, we used molecular markers to study the species composition and phylogeny of Megastigmus collected from eucalypt galls in Australia and from Leptocybe spp. galls from South Africa, Kenya, Israel, China, and Vietnam. We record thirteen discrete species and a species complex associated with eucalypt galls. A summary of morphological characters is provided to assist morphological delimitation of the studied group. A phylogeny based on 28S rDNA identified species groups of importance to Leptocybe spp. biocontrol agents from four clades with nine species. Relationships between Megastigmus from eucalypt galls and their phytophagous congeners were unresolved. Further molecular work is needed to clarify the identity of many species.

18.
Antibiotics (Basel) ; 9(8)2020 Aug 06.
Article in English | MEDLINE | ID: mdl-32781771

ABSTRACT

Acronychia crassipetala is an endemic plant species in Australia. Its phytochemistry and therapeutic properties are underexplored. The hexane extract of the fruit A. crassipetala T. G. Hartley was found to inhibit the growth of the Gram-positive bacteria Staphylococcus aureus. Following bio-activity guided fractionation, two prenylated acetophenones, crassipetalonol A (1) and crassipetalone A (2), were isolated. Their structures were determined mainly by NMR and MS spectroscopic analyses. This is the first record of the isolation and structural characterisation of secondary metabolites from the species A. crassipetala. Their antibacterial and cytotoxic assessments indicated that the known compound (2) had more potent antibacterial activity than the antibiotic chloramphenicol, while the new compound (1) showed moderate cytotoxicity.

19.
Int J Mol Sci ; 21(14)2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32679731

ABSTRACT

Propolis is a natural resinous material produced by bees and has been used in folk medicines since ancient times. Due to it possessing a broad spectrum of biological activities, it has gained significant scientific and commercial interest over the last two decades. As a result of searching 122 publications reported up to the end of 2019, we assembled a unique compound database consisting of 578 components isolated from both honey bee propolis and stingless bee propolis, and analyzed the chemical space and chemical diversity of these compounds. The results demonstrated that both honey bee propolis and stingless bee propolis are valuable sources for pharmaceutical and nutraceutical development.


Subject(s)
Propolis/chemistry , Propolis/pharmacology , Animals , Bees , Cheminformatics , Drug Discovery , Honey/analysis , Medicine, Traditional , Phenols/analysis , Phenols/pharmacology , Terpenes/analysis , Terpenes/pharmacology
20.
Fitoterapia ; 146: 104680, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32653491

ABSTRACT

Euphorbiaceae is a large and diverse family of herbs, shrubs and trees that includes a number of species of considerable economic importance as sources of food, medicines and raw materials. One member of this family, Fontainea picrosperma, is the source plant for the diterpene ester tigilanol tiglate, a natural product recently approved as a treatment for canine mast cell tumours. Here we report the development of reference transcriptomes from root and leaf tissues of F. picrosperma, which include core diterpene biosynthesis genes. A total of ~12 Gb of combined clean reads were generated for assembly into 167,566 contigs with a GC (guanine-cytosine) content of ~41%. Gene ontology showed that 2286 and 2504 transcripts were enriched in the cellular process and 2369 and 2529 transcripts were enriched in the metabolic process categories in leaf and root tissue, respectively. The reference transcriptome contains genes coding for core enzymes involved in common secondary metabolite biosynthetic pathways, including the diterpene biosynthesis pathway within the mevalonate (MVA) and 2-C-methyl-D-erythritol 4- phosphate (MEP) pathways. A phylogenetic analysis using these genes found that F. picrosperma clustered most closely to Jatropha curcas. We found a significantly higher concentration of tigilanol tiglate in F. picrosperma root tissue, which correlated with higher levels of gene expression for enzymes associated with the MVA (6 genes) and MEP (7 genes) pathways, and we hypothesise that the initial stages of tigilanol tiglate biosynthesis occur primarily in the roots of F. picrosperma. This study provides a resource for future gene-related biodiscovery investigations in F. picrosperma and diterpene biosynthesis, in particular for tigilanol tiglate and related macrocyclic diterpenes.


Subject(s)
Biosynthetic Pathways , Euphorbiaceae/genetics , Transcriptome , Diterpenes/metabolism , Euphorbiaceae/metabolism , Gene Expression Regulation, Plant , Gene Ontology , Phylogeny , Plant Leaves/metabolism , Plant Roots/metabolism , Plants, Medicinal/genetics , Plants, Medicinal/metabolism , Queensland
SELECTION OF CITATIONS
SEARCH DETAIL
...