Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(22): 221301, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30547645

ABSTRACT

We present results from an analysis of all data taken by the bicep2/Keck CMB polarization experiments up to and including the 2015 observing season. This includes the first Keck Array observations at 220 GHz and additional observations at 95 and 150 GHz. The Q and U maps reach depths of 5.2, 2.9, and 26 µK_{CMB} arcmin at 95, 150, and 220 GHz, respectively, over an effective area of ≈400 square degrees. The 220 GHz maps achieve a signal to noise on polarized dust emission approximately equal to that of Planck at 353 GHz. We take auto and cross spectra between these maps and publicly available WMAP and Planck maps at frequencies from 23 to 353 GHz. We evaluate the joint likelihood of the spectra versus a multicomponent model of lensed-ΛCDM+r+dust+synchrotron+noise. The foreground model has seven parameters, and we impose priors on some of these using external information from Planck and WMAP derived from larger regions of sky. The model is shown to be an adequate description of the data at the current noise levels. The likelihood analysis yields the constraint r_{0.05}<0.07 at 95% confidence, which tightens to r_{0.05}<0.06 in conjunction with Planck temperature measurements and other data. The lensing signal is detected at 8.8σ significance. Running a maximum likelihood search on simulations we obtain unbiased results and find that σ(r)=0.020. These are the strongest constraints to date on primordial gravitational waves.

2.
Phys Rev Lett ; 116(3): 031302, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26849583

ABSTRACT

We present results from an analysis of all data taken by the BICEP2 and Keck Array cosmic microwave background (CMB) polarization experiments up to and including the 2014 observing season. This includes the first Keck Array observations at 95 GHz. The maps reach a depth of 50 nK deg in Stokes Q and U in the 150 GHz band and 127 nK deg in the 95 GHz band. We take auto- and cross-spectra between these maps and publicly available maps from WMAP and Planck at frequencies from 23 to 353 GHz. An excess over lensed ΛCDM is detected at modest significance in the 95×150 BB spectrum, and is consistent with the dust contribution expected from our previous work. No significant evidence for synchrotron emission is found in spectra such as 23×95, or for correlation between the dust and synchrotron sky patterns in spectra such as 23×353. We take the likelihood of all the spectra for a multicomponent model including lensed ΛCDM, dust, synchrotron, and a possible contribution from inflationary gravitational waves (as parametrized by the tensor-to-scalar ratio r) using priors on the frequency spectral behaviors of dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions of the sky. This analysis yields an upper limit r_{0.05}<0.09 at 95% confidence, which is robust to variations explored in analysis and priors. Combining these B-mode results with the (more model-dependent) constraints from Planck analysis of CMB temperature plus baryon acoustic oscillations and other data yields a combined limit r_{0.05}<0.07 at 95% confidence. These are the strongest constraints to date on inflationary gravitational waves.

3.
Phys Rev Lett ; 112(24): 241101, 2014 Jun 20.
Article in English | MEDLINE | ID: mdl-24996078

ABSTRACT

We report results from the BICEP2 experiment, a cosmic microwave background (CMB) polarimeter specifically designed to search for the signal of inflationary gravitational waves in the B-mode power spectrum around ℓ∼80. The telescope comprised a 26 cm aperture all-cold refracting optical system equipped with a focal plane of 512 antenna coupled transition edge sensor 150 GHz bolometers each with temperature sensitivity of ≈300 µK(CMB)√s. BICEP2 observed from the South Pole for three seasons from 2010 to 2012. A low-foreground region of sky with an effective area of 380 square deg was observed to a depth of 87 nK deg in Stokes Q and U. In this paper we describe the observations, data reduction, maps, simulations, and results. We find an excess of B-mode power over the base lensed-ΛCDM expectation in the range 30 < ℓ < 150, inconsistent with the null hypothesis at a significance of >5σ. Through jackknife tests and simulations based on detailed calibration measurements we show that systematic contamination is much smaller than the observed excess. Cross correlating against WMAP 23 GHz maps we find that Galactic synchrotron makes a negligible contribution to the observed signal. We also examine a number of available models of polarized dust emission and find that at their default parameter values they predict power ∼(5-10)× smaller than the observed excess signal (with no significant cross-correlation with our maps). However, these models are not sufficiently constrained by external public data to exclude the possibility of dust emission bright enough to explain the entire excess signal. Cross correlating BICEP2 against 100 GHz maps from the BICEP1 experiment, the excess signal is confirmed with 3σ significance and its spectral index is found to be consistent with that of the CMB, disfavoring dust at 1.7σ. The observed B-mode power spectrum is well fit by a lensed-ΛCDM+tensor theoretical model with tensor-to-scalar ratio r = 0.20_(-0.05)(+0.07), with r = 0 disfavored at 7.0σ. Accounting for the contribution of foreground, dust will shift this value downward by an amount which will be better constrained with upcoming data sets.

4.
Phys Rev Lett ; 106(13): 131302, 2011 Apr 01.
Article in English | MEDLINE | ID: mdl-21517371

ABSTRACT

We report results from a reanalysis of data from the Cryogenic Dark Matter Search (CDMS II) experiment at the Soudan Underground Laboratory. Data taken between October 2006 and September 2008 using eight germanium detectors are reanalyzed with a lowered, 2 keV recoil-energy threshold, to give increased sensitivity to interactions from weakly interacting massive particles (WIMPs) with masses below ∼10 GeV/c(2). This analysis provides stronger constraints than previous CDMS II results for WIMP masses below 9 GeV/c(2) and excludes parameter space associated with possible low-mass WIMP signals from the DAMA/LIBRA and CoGeNT experiments.

5.
Science ; 327(5973): 1619-21, 2010 Mar 26.
Article in English | MEDLINE | ID: mdl-20150446

ABSTRACT

Astrophysical observations indicate that dark matter constitutes most of the mass in our universe, but its nature remains unknown. Over the past decade, the Cryogenic Dark Matter Search (CDMS II) experiment has provided world-leading sensitivity for the direct detection of weakly interacting massive particle (WIMP) dark matter. The final exposure of our low-temperature germanium particle detectors at the Soudan Underground Laboratory yielded two candidate events, with an expected background of 0.9 +/- 0.2 events. This is not statistically significant evidence for a WIMP signal. The combined CDMS II data place the strongest constraints on the WIMP-nucleon spin-independent scattering cross section for a wide range of WIMP masses and exclude new parameter space in inelastic dark matter models.

6.
Phys Rev Lett ; 103(14): 141802, 2009 Oct 02.
Article in English | MEDLINE | ID: mdl-19905561

ABSTRACT

We report on the first axion search results from the Cryogenic Dark Matter Search (CDMS) experiment at the Soudan Underground Laboratory. An energy threshold of 2 keV for electron-recoil events allows a search for possible solar axion conversion into photons or local galactic axion conversion into electrons in the germanium crystal detectors. The solar axion search sets an upper limit on the Primakov coupling g(agammagamma) of 2.4x10(-9) GeV-1 at the 95% confidence level for an axion mass less than 0.1 keV/c2. This limit benefits from the first precise measurement of the absolute crystal plane orientations in this type of experiment. The galactic axion search analysis sets a world-leading experimental upper limit on the axioelectric coupling g(aee) of 1.4x10(-12) at the 90% confidence level for an axion mass of 2.5 keV/c2.

7.
Phys Rev Lett ; 102(1): 011301, 2009 Jan 09.
Article in English | MEDLINE | ID: mdl-19257177

ABSTRACT

We report results from the Cryogenic Dark Matter Search at the Soudan Underground Laboratory (CDMS II) featuring the full complement of 30 detectors. A blind analysis of data taken between October 2006 and July 2007 sets an upper limit on the weakly interacting massive particle (WIMP) nucleon spin-independent cross section of 6.6x10;{-44} cm;{2} (4.6x10;{-44} cm;{2} when combined with previous CDMS II data) at the 90% confidence level for a WIMP mass of 60 GeV/c;{2}. This achieves the best sensitivity for dark matter WIMPs with masses above 44 GeV/c;{2}, and significantly restricts the parameter space for some favored supersymmetric models.

8.
Phys Rev Lett ; 96(1): 011302, 2006 Jan 13.
Article in English | MEDLINE | ID: mdl-16486434

ABSTRACT

We report new results from the Cryogenic Dark Matter Search (CDMS II) at the Soudan Underground Laboratory. Two towers, each consisting of six detectors, were operated for 74.5 live days, giving spectrum-weighted exposures of 34 (12) kg d for the Ge (Si) targets after cuts, averaged over recoil energies 10-100 keV for a weakly interacting massive particle (WIMP) mass of 60 GeV/c2. A blind analysis was conducted, incorporating improved techniques for rejecting surface events. No WIMP signal exceeding expected backgrounds was observed. When combined with our previous results from Soudan, the 90% C.L. upper limit on the spin-independent WIMP-nucleon cross section is 1.6 x 10(-43) cm2 from Ge and 3 x 10(-42) cm2 from Si, for a WIMP mass of 60 GeV/c2. The combined limit from Ge (Si) is a factor of 2.5 (10) lower than our previous results and constrains predictions of supersymmetric models.

SELECTION OF CITATIONS
SEARCH DETAIL
...