Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2024 Jul 12.
Article in English | MEDLINE | ID: mdl-39005374

ABSTRACT

Mechanosensory hair cells of the inner ears and lateral line of vertebrates display heightened vulnerability to environmental insult, with damage resulting in hearing and balance disorders. An important example is hair cell loss due to exposure to toxic agents including therapeutic drugs such as the aminoglycoside antibiotics such as neomycin and gentamicin and antineoplastic agents. We describe two distinct cellular pathways for aminoglycoside-induced hair cell death in zebrafish lateral line hair cells. Neomycin exposure results in death from acute exposure with most cells dying within 1 hour of exposure. By contrast, exposure to gentamicin results primarily in delayed hair cell death, taking up to 24 hours for maximal effect. Washout experiments demonstrate that delayed death does not require continuous exposure, demonstrating two mechanisms where downstream responses differ in their timing. Acute damage is associated with mitochondrial calcium fluxes and can be alleviated by the mitochondrially-targeted antioxidant mitoTEMPO, while delayed death is independent of these factors. Conversely delayed death is associated with lysosomal accumulation and is reduced by altering endolysosomal function, while acute death is not sensitive to lysosomal manipulations. These experiments reveal the complexity of responses of hair cells to closely related compounds, suggesting that intervention focusing on early events rather than specific death pathways may be a successful therapeutic strategy.

2.
Nat Commun ; 15(1): 1368, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365905

ABSTRACT

Serotonin (5-HT) imbalances in the developing prefrontal cortex (PFC) are linked to long-term behavioral deficits. However, the synaptic mechanisms underlying 5-HT-mediated PFC development are unknown. We found that chemogenetic suppression and enhancement of 5-HT release in the PFC during the first two postnatal weeks decreased and increased the density and strength of excitatory spine synapses, respectively, on prefrontal layer 2/3 pyramidal neurons in mice. 5-HT release on single spines induced structural and functional long-term potentiation (LTP), requiring both 5-HT2A and 5-HT7 receptor signals, in a glutamatergic activity-independent manner. Notably, LTP-inducing 5-HT stimuli increased the long-term survival of newly formed spines ( ≥ 6 h) via 5-HT7 Gαs activation. Chronic treatment of mice with fluoxetine, a selective serotonin-reuptake inhibitor, during the first two weeks, but not the third week of postnatal development, increased the density and strength of excitatory synapses. The effect of fluoxetine on PFC synaptic alterations in vivo was abolished by 5-HT2A and 5-HT7 receptor antagonists. Our data describe a molecular basis of 5-HT-dependent excitatory synaptic plasticity at the level of single spines in the PFC during early postnatal development.


Subject(s)
Fluoxetine , Serotonin , Mice , Animals , Serotonin/pharmacology , Fluoxetine/pharmacology , Pyramidal Cells/physiology , Prefrontal Cortex/physiology , Synapses/physiology
4.
Neuron ; 111(3): 362-371.e6, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36395772

ABSTRACT

Dendritic spines can be directly connected to both inhibitory and excitatory presynaptic terminals, resulting in nanometer-scale proximity of opposing synaptic functions. While dually innervated spines (DiSs) are observed throughout the central nervous system, their developmental timeline and functional properties remain uncharacterized. Here we used a combination of serial section electron microscopy, live imaging, and local synapse activity manipulations to investigate DiS development and function in rodent hippocampus. Dual innervation occurred early in development, even on spines where the excitatory input was locally silenced. Synaptic NMDA receptor currents were selectively reduced at DiSs through tonic GABAB receptor signaling. Accordingly, spine enlargement normally associated with long-term potentiation on singly innervated spines (SiSs) was blocked at DiSs. Silencing somatostatin interneurons or pharmacologically blocking GABABRs restored NMDA receptor function and structural plasticity to levels comparable to neighboring SiSs. Thus, hippocampal DiSs are stable structures where function and plasticity are potently regulated by nanometer-scale GABAergic signaling.


Subject(s)
Dendritic Spines , Receptors, N-Methyl-D-Aspartate , Dendritic Spines/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Hippocampus/physiology , Long-Term Potentiation/physiology , Synapses/physiology , gamma-Aminobutyric Acid , Neuronal Plasticity/physiology
5.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35074912

ABSTRACT

Balanced synaptic inhibition, controlled by multiple synaptic adhesion proteins, is critical for proper brain function. MDGA1 (meprin, A-5 protein, and receptor protein-tyrosine phosphatase mu [MAM] domain-containing glycosylphosphatidylinositol anchor protein 1) suppresses synaptic inhibition in mammalian neurons, yet the molecular mechanisms underlying MDGA1-mediated negative regulation of GABAergic synapses remain unresolved. Here, we show that the MDGA1 MAM domain directly interacts with the extension domain of amyloid precursor protein (APP). Strikingly, MDGA1-mediated synaptic disinhibition requires the MDGA1 MAM domain and is prominent at distal dendrites of hippocampal CA1 pyramidal neurons. Down-regulation of APP in presynaptic GABAergic interneurons specifically suppressed GABAergic, but not glutamatergic, synaptic transmission strength and inputs onto both the somatic and dendritic compartments of hippocampal CA1 pyramidal neurons. Moreover, APP deletion manifested differential effects in somatostatin- and parvalbumin-positive interneurons in the hippocampal CA1, resulting in distinct alterations in inhibitory synapse numbers, transmission, and excitability. The infusion of MDGA1 MAM protein mimicked postsynaptic MDGA1 gain-of-function phenotypes that involve the presence of presynaptic APP. The overexpression of MDGA1 wild type or MAM, but not MAM-deleted MDGA1, in the hippocampal CA1 impaired novel object-recognition memory in mice. Thus, our results establish unique roles of APP-MDGA1 complexes in hippocampal neural circuits, providing unprecedented insight into trans-synaptic mechanisms underlying differential tuning of neuronal compartment-specific synaptic inhibition.


Subject(s)
Amyloid beta-Protein Precursor/metabolism , Hippocampus/metabolism , Hippocampus/physiopathology , Neural Cell Adhesion Molecules/genetics , Neural Inhibition , Synapses/metabolism , Amyloid beta-Protein Precursor/genetics , CA1 Region, Hippocampal , Carrier Proteins , Dendrites/metabolism , GABAergic Neurons/metabolism , Interneurons , Models, Biological , Neural Cell Adhesion Molecules/chemistry , Neural Cell Adhesion Molecules/metabolism , Neural Inhibition/genetics , Protein Binding , Protein Interaction Domains and Motifs , Pyramidal Cells/metabolism , Receptors, GABA-B/metabolism , Synaptic Transmission
6.
Cell Rep ; 35(5): 109074, 2021 05 04.
Article in English | MEDLINE | ID: mdl-33951422

ABSTRACT

Stress adversely affects an array of cognitive functions. Although stress-related disorders are often addressed in adulthood, far less is known about how early-life stress (ELS) affects the developing brain in early postnatal periods. Here we show that ELS, induced by maternal separation, leads to synaptic alteration of layer 2/3 pyramidal neurons in the prefrontal cortex (PFC) of mice. We find that layer 2/3 neurons show increased excitatory synapse numbers following ELS and that this is accompanied by hyperexcitability of PFC-projecting dopamine (DA) neurons in the ventral tegmental area. Notably, excitatory synaptic change requires local signaling through DA D2 receptors. In vivo pharmacological treatment with a D2 receptor agonist in the PFC of control mice mimics the effects of ELS on synaptic alterations. Our findings reveal a neuromodulatory mechanism underlying ELS-induced PFC dysfunction, and this mechanism may facilitate a more comprehensive understanding of how ELS leads to mental disorders.


Subject(s)
Dopamine/metabolism , Prefrontal Cortex/physiology , Animals , Male , Mice
7.
eNeuro ; 7(6)2020.
Article in English | MEDLINE | ID: mdl-33109633

ABSTRACT

Precise information on synapse organization in a dendrite is crucial to understanding the mechanisms underlying voltage integration and the variability in the strength of synaptic inputs across dendrites of different complex morphologies. Here, we used focused ion beam/scanning electron microscope (FIB/SEM) to image the dendritic spines of mice in the hippocampal CA1 region, CA3 region, somatosensory cortex, striatum, and cerebellum (CB). Our results show that the spine geometry and dimensions differ across neuronal cell types. Despite this difference, dendritic spines were organized in an orchestrated manner such that the postsynaptic density (PSD) area per unit length of dendrite scaled positively with the dendritic diameter in CA1 proximal stratum radiatum (PSR), cortex, and CB. The ratio of the PSD area to neck length was kept relatively uniform across dendrites of different diameters in CA1 PSR. Computer simulation suggests that a similar level of synaptic strength across different dendrites in CA1 PSR enables the effective transfer of synaptic inputs from the dendrites toward soma. Excitatory postsynaptic potentials (EPSPs), evoked at single spines by glutamate uncaging and recorded at the soma, show that the neck length is more influential than head width in regulating the EPSP magnitude at the soma. Our study describes thorough morphologic features and the organizational principles of dendritic spines in different brain regions.


Subject(s)
Dendrites , Synapses , Animals , Computer Simulation , Excitatory Postsynaptic Potentials , Mice , Neurons
9.
J Neuroinflammation ; 15(1): 77, 2018 Mar 13.
Article in English | MEDLINE | ID: mdl-29534751

ABSTRACT

BACKGROUND: The therapeutic efficacy of adipose-derived stem cells (ASCs) has been investigated for numerous clinical indications, including autoimmune and neurodegenerative diseases. Less is known using the crude adipose product called stromal vascular fraction (SVF) as therapy, although our previous studies demonstrated greater efficacy at late-stage disease compared to ASCs in the experimental autoimmune encephalomyelitis (EAE) mouse, a model of multiple sclerosis. In this study, SVF cells and ASCs were administered during the pathogenic progression, designated as early disease, to elucidate immunomodulatory mechanisms when high immune cell activities associated with autoimmune signaling occur. These implications are essential for clinical translation when considering timing of administration for cell therapies. METHODS: We investigated the effects of SVF cells and ASCs by analyzing the spleens, peripheral blood, and central nervous system tissues throughout the course of EAE disease following administration of SVF cells, ASCs, or vehicle. In vitro, immunomodulatory potentials of SVF cells and ASCs were measured when exposed to EAE-derived splenocytes. RESULTS: Interestingly, treatment with SVF cells and ASCs transiently enhanced the severity of disease directly after administration, substantiating this critical immunomodulatory signaling. More importantly, it was only the EAE mice treated with SVF cells that were able to overcome the advancing pathogenesis and showed improvements by the end of the study. The frequency of lesions in spinal cords following SVF treatment correlated with diminished activities of the T helper type 1 cells, known effector cells of this disease. Co-cultures with splenocytes isolated from EAE mice revealed transcripts of interleukin-10 and transforming growth factor-ß, known promoters of regulatory T cells, that were greatly expressed in SVF cells compared to ASCs, and expression levels of signaling mediators related to effector T cells were insignificant in both SVF cells and ASCs. CONCLUSION: This is the first evidence, to date, to elucidate a mechanism of action of SVF treatment in an inflammatory, autoimmune disease. Our data supports key immunomodulatory signaling between cell therapies and T cells in this T cell-mediated disease. Together, treatment with SVF mediated immunomodulatory effects that diminished effector cell activities, promoted regulatory T cells, and reduced neuroinflammation.


Subject(s)
Adipose Tissue/cytology , Encephalomyelitis, Autoimmune, Experimental/pathology , Encephalomyelitis, Autoimmune, Experimental/therapy , Stromal Cells/physiology , Subcellular Fractions/physiology , Th1 Cells/pathology , Animals , Antigens, Neoplasm/genetics , Antigens, Neoplasm/metabolism , Coculture Techniques , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/physiopathology , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Regulation/physiology , Immunologic Factors/therapeutic use , Mesenchymal Stem Cell Transplantation , Mice , Mice, Inbred C57BL , Mice, Transgenic , Receptors, Interleukin-2/genetics , Receptors, Interleukin-2/metabolism , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism , Spinal Cord/metabolism , Spinal Cord/pathology , Stromal Cells/ultrastructure
10.
Stem Cells ; 35(10): 2198-2207, 2017 10.
Article in English | MEDLINE | ID: mdl-28801931

ABSTRACT

The pathogenesis of many diseases is driven by the interactions between helper T (TH ) cells and macrophages. The phenotypes of these cells are functional dichotomies that are persuaded according to the surrounding milieu. In both multiple sclerosis and the experimental autoimmune encephalomyelitis (EAE) model, TH 1 and TH 17 cells propagate autoimmune signaling and inflammation in the peripheral lymphoid tissues. In turn, this proinflammatory repertoire promotes the classical activation, formerly the M1-type, macrophages. Together, these cells infiltrate into the central nervous system (CNS) tissues and generate inflammatory and demyelinating lesions. Our most recent report demonstrated the immunomodulatory and anti-inflammatory effects of adipose stromal vascular fraction (SVF) cells and adipose-derived stem cells (ASCs) that led to functional, immunological, and pathological improvements in the EAE model. Here, a deeper investigation revealed the induction of regulatory T cells and alternative activation, or M2-type, macrophages in the periphery followed by the presence of alternative activation macrophages, reduced cellular infiltrates, and attenuation of neuroinflammation in CNS tissues following intraperitoneal administration of these treatments. Spleens from treated EAE mice revealed diminished TH 1 and TH 17 cell activities and were markedly higher in the levels of anti-inflammatory cytokine interleukin-10. Interestingly, SVF cells were more effective than ASCs at mediating these beneficial changes, which were attributed to their localization to the spleens after administration. Together, SVF cells rapidly and robustly attenuated the propagation of autoimmune signaling in the periphery that provided a permissive milieu in the CNS for repair and possibly regeneration. Stem Cells 2017;35:2198-2207.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Immunomodulation/immunology , Macrophages/metabolism , Stromal Cells/metabolism , Adipocytes/pathology , Animals , Disease Models, Animal , Mice , Stromal Cells/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...