Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(4): 3359-3370, 2022 02 24.
Article in English | MEDLINE | ID: mdl-35148092

ABSTRACT

Phosphatidylinositol 5-phosphate 4-kinases (PI5P4Ks) are emerging as attractive therapeutic targets in diseases, such as cancer, immunological disorders, and neurodegeneration, owing to their central role in regulating cell signaling pathways that are either dysfunctional or can be modulated to promote cell survival. Different modes of binding may enhance inhibitor selectivity and reduce off-target effects in cells. Here, we describe efforts to improve the physicochemical properties of the selective PI5P4Kγ inhibitor, NIH-12848 (1). These improvements enabled the demonstration that this chemotype engages PI5P4Kγ in intact cells and that compounds from this series do not inhibit PI5P4Kα or PI5P4Kß. Furthermore, the first X-ray structure of PI5P4Kγ bound to an inhibitor has been determined with this chemotype, confirming an allosteric binding mode. An exemplar from this chemical series adopted two distinct modes of inhibition, including through binding to a putative lipid interaction site which is 18 Å from the ATP pocket.


Subject(s)
Adenosine Triphosphate/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/pharmacology , Quinazolines/chemical synthesis , Quinazolines/pharmacology , Thiophenes/chemical synthesis , Thiophenes/pharmacology , Allosteric Regulation/drug effects , Binding, Competitive , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Docking Simulation , Phosphotransferases (Alcohol Group Acceptor)/chemistry , Substrate Specificity
2.
J Am Chem Soc ; 142(23): 10358-10372, 2020 06 10.
Article in English | MEDLINE | ID: mdl-32412754

ABSTRACT

With a resurgence in interest in covalent drugs, there is a need to identify new moieties capable of cysteine bond formation that are differentiated from commonly employed systems such as acrylamide. Herein, we report on the discovery of new alkynyl benzoxazine and dihydroquinazoline moieties capable of covalent reaction with cysteine. Their utility as alternative electrophilic warheads for chemical biological probes and drug molecules is demonstrated through site-selective protein modification and incorporation into kinase drug scaffolds. A potent covalent inhibitor of JAK3 kinase was identified with superior selectivity across the kinome and improvements in in vitro pharmacokinetic profile relative to the related acrylamide-based inhibitor. In addition, the use of a novel heterocycle as a cysteine reactive warhead is employed to target Cys788 in c-KIT, where acrylamide has previously failed to form covalent interactions. These new reactive and selective heterocyclic warheads supplement the current repertoire for cysteine covalent modification while avoiding some of the limitations generally associated with established moieties.


Subject(s)
Benzoxazines/pharmacology , Janus Kinase 3/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Quinazolines/pharmacology , Benzoxazines/chemical synthesis , Benzoxazines/chemistry , Humans , Janus Kinase 3/metabolism , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Quinazolines/chemical synthesis , Quinazolines/chemistry
3.
J Med Chem ; 63(9): 4468-4483, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32023060

ABSTRACT

Attempts to directly drug the important oncogene KRAS have met with limited success despite numerous efforts across industry and academia. The KRASG12C mutant represents an "Achilles heel" and has recently yielded to covalent targeting with small molecules that bind the mutant cysteine and create an allosteric pocket on GDP-bound RAS, locking it in an inactive state. A weak inhibitor at this site was optimized through conformational locking of a piperazine-quinazoline motif and linker modification. Subsequent introduction of a key methyl group to the piperazine resulted in enhancements in potency, permeability, clearance, and reactivity, leading to identification of a potent KRASG12C inhibitor with high selectivity and excellent cross-species pharmacokinetic parameters and in vivo efficacy.


Subject(s)
Antineoplastic Agents/therapeutic use , Neoplasms/drug therapy , Piperazines/therapeutic use , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Quinazolines/therapeutic use , Quinolones/therapeutic use , Allosteric Regulation , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/pharmacokinetics , Caco-2 Cells , Cell Line, Tumor , Drug Design , Humans , Male , Mice, Nude , Molecular Conformation , Mutation , Piperazines/chemical synthesis , Piperazines/pharmacokinetics , Proto-Oncogene Proteins p21(ras)/genetics , Quinazolines/chemical synthesis , Quinazolines/pharmacokinetics , Quinolones/chemical synthesis , Quinolones/pharmacokinetics , Rats, Wistar , Structure-Activity Relationship , Xenograft Model Antitumor Assays
4.
Elife ; 82019 08 22.
Article in English | MEDLINE | ID: mdl-31436532

ABSTRACT

The immunoreceptor tyrosine-based inhibition motif (ITIM)-containing receptor G6b-B is critical for platelet production and activation. Loss of G6b-B results in severe macrothrombocytopenia, myelofibrosis and aberrant platelet function in mice and humans. Using a combination of immunohistochemistry, affinity chromatography and proteomics, we identified the extracellular matrix heparan sulfate (HS) proteoglycan perlecan as a G6b-B binding partner. Subsequent in vitro biochemical studies and a cell-based genetic screen demonstrated that the interaction is specifically mediated by the HS chains of perlecan. Biophysical analysis revealed that heparin forms a high-affinity complex with G6b-B and mediates dimerization. Using platelets from humans and genetically modified mice, we demonstrate that binding of G6b-B to HS and multivalent heparin inhibits platelet and megakaryocyte function by inducing downstream signaling via the tyrosine phosphatases Shp1 and Shp2. Our findings provide novel insights into how G6b-B is regulated and contribute to our understanding of the interaction of megakaryocytes and platelets with glycans.


Subject(s)
Blood Platelets/physiology , Heparitin Sulfate/metabolism , Megakaryocytes/physiology , Receptors, Immunologic/metabolism , Animals , Humans , Mice, Inbred C57BL , Mice, Knockout , Protein Binding , Protein Multimerization , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Protein Tyrosine Phosphatase, Non-Receptor Type 6/metabolism , Receptors, Immunologic/deficiency , Receptors, Immunologic/genetics , Signal Transduction
5.
J Med Chem ; 61(19): 8797-8810, 2018 10 11.
Article in English | MEDLINE | ID: mdl-30204441

ABSTRACT

While the treatment of gastrointestinal stromal tumors (GISTs) has been revolutionized by the application of targeted tyrosine kinase inhibitors capable of inhibiting KIT-driven proliferation, diverse mutations to this kinase drive resistance to established therapies. Here we describe the identification of potent pan-KIT mutant kinase inhibitors that can be dosed without being limited by the tolerability issues seen with multitargeted agents. This effort focused on identification and optimization of an existing kinase scaffold through the use of structure-based design. Starting from a series of previously reported phenoxyquinazoline and quinoline based inhibitors of the tyrosine kinase PDGFRα, potency against a diverse panel of mutant KIT driven Ba/F3 cell lines was optimized, with a particular focus on reducing activity against a KDR driven cell model in order to limit the potential for hypertension commonly seen in second and third line GIST therapies. AZD3229 demonstrates potent single digit nM growth inhibition across a broad cell panel, with good margin to KDR-driven effects. Selectivity over KDR can be rationalized predominantly by the interaction of water molecules with the protein and ligand in the active site, and its kinome selectivity is similar to the best of the approved GIST agents. This compound demonstrates excellent cross-species pharmacokinetics, shows strong pharmacodynamic inhibition of target, and is active in several in vivo models of GIST.


Subject(s)
Drug Discovery , Gastrointestinal Stromal Tumors/drug therapy , Mutant Proteins/antagonists & inhibitors , Mutation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-kit/antagonists & inhibitors , Quinazolines/chemistry , Quinazolines/pharmacology , Triazoles/chemistry , Triazoles/pharmacology , Gastrointestinal Neoplasms/drug therapy , Gastrointestinal Neoplasms/metabolism , Gastrointestinal Neoplasms/pathology , Gastrointestinal Stromal Tumors/metabolism , Gastrointestinal Stromal Tumors/pathology , Humans , Models, Molecular , Mutant Proteins/genetics , Mutant Proteins/metabolism , Protein Conformation , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-kit/genetics , Proto-Oncogene Proteins c-kit/metabolism , Quinazolines/pharmacokinetics , Tissue Distribution , Triazoles/pharmacokinetics , Tumor Cells, Cultured
6.
Nat Chem Biol ; 12(12): 1097-1104, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27775716

ABSTRACT

Proteins of the bromodomain and extraterminal (BET) family, in particular bromodomain-containing protein 4 (BRD4), are of great interest as biological targets. BET proteins contain two separate bromodomains, and existing inhibitors bind to them monovalently. Here we describe the discovery and characterization of probe compound biBET, capable of engaging both bromodomains simultaneously in a bivalent, in cis binding mode. The evidence provided here was obtained in a variety of biophysical and cellular experiments. The bivalent binding results in very high cellular potency for BRD4 binding and pharmacological responses such as disruption of BRD4-mediator complex subunit 1 foci with an EC50 of 100 pM. These compounds will be of considerable utility as BET/BRD4 chemical probes. This work illustrates a novel concept in ligand design-simultaneous targeting of two separate domains with a drug-like small molecule-providing precedent for a potentially more effective paradigm for developing ligands for other multi-domain proteins.


Subject(s)
Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/chemistry , Protein Domains/drug effects , Small Molecule Libraries/pharmacology , Transcription Factors/antagonists & inhibitors , Transcription Factors/chemistry , Apoptosis/drug effects , Cell Cycle Proteins , Cell Line, Tumor , Cell Proliferation/drug effects , Crystallography, X-Ray , Dose-Response Relationship, Drug , Humans , Ligands , Models, Molecular , Molecular Structure , Nuclear Proteins/metabolism , Small Molecule Libraries/chemistry , Structure-Activity Relationship , Substrate Specificity , Transcription Factors/metabolism
7.
Acta Crystallogr D Struct Biol ; 72(Pt 5): 682-93, 2016 05.
Article in English | MEDLINE | ID: mdl-27139631

ABSTRACT

MAP kinases act as an integration point for multiple biochemical signals and are involved in a wide variety of cellular processes such as proliferation, differentiation, regulation of transcription and development. As a member of the MAP kinase family, ERK5 (MAPK7) is involved in the downstream signalling pathways of various cell-surface receptors, including receptor tyrosine kinases and G protein-coupled receptors. In the current study, five structures of the ERK5 kinase domain co-crystallized with ERK5 inhibitors are reported. Interestingly, three of the compounds bind at a novel allosteric binding site in ERK5, while the other two bind at the typical ATP-binding site. Binding of inhibitors at the allosteric site is accompanied by displacement of the P-loop into the ATP-binding site and is shown to be ATP-competitive in an enzymatic assay of ERK5 kinase activity. Kinase selectivity data show that the most potent allosteric inhibitor exhibits superior kinase selectivity compared with the two inhibitors that bind at the canonical ATP-binding site. An analysis of these structures and comparison with both a previously published ERK5-inhibitor complex structure (PDB entry 4b99) and the structures of three other kinases (CDK2, ITK and MEK) in complex with allosteric inhibitors are presented.


Subject(s)
Mitogen-Activated Protein Kinase 7/antagonists & inhibitors , Mitogen-Activated Protein Kinase 7/chemistry , Protein Kinase Inhibitors/pharmacology , Adenosine Triphosphate/metabolism , Allosteric Regulation/drug effects , Allosteric Site/drug effects , Binding Sites/drug effects , Crystallography, X-Ray , Humans , Mitogen-Activated Protein Kinase 7/metabolism , Molecular Docking Simulation , Protein Kinase Inhibitors/chemistry
8.
Oncotarget ; 7(17): 24252-68, 2016 Apr 26.
Article in English | MEDLINE | ID: mdl-26992226

ABSTRACT

Frequent genetic alterations discovered in FGFRs and evidence implicating some as drivers in diverse tumors has been accompanied by rapid progress in targeting FGFRs for anticancer treatments. Wider assessment of the impact of genetic changes on the activation state and drug responses is needed to better link the genomic data and treatment options. We here apply a direct comparative and comprehensive analysis of FGFR3 kinase domain variants representing the diversity of point-mutations reported in this domain. We reinforce the importance of N540K and K650E and establish that not all highly activating mutations (for example R669G) occur at high-frequency and conversely, that some "hotspots" may not be linked to activation. Further structural characterization consolidates a mechanistic view of FGFR kinase activation and extends insights into drug binding. Importantly, using several inhibitors of particular clinical interest (AZD4547, BGJ-398, TKI258, JNJ42756493 and AP24534), we find that some activating mutations (including different replacements of the same residue) result in distinct changes in their efficacy. Considering that there is no approved inhibitor for anticancer treatments based on FGFR-targeting, this information will be immediately translatable to ongoing clinical trials.


Subject(s)
Benzamides/pharmacology , Biomarkers, Tumor/genetics , Cell Transformation, Neoplastic/pathology , Mutation , Neoplasms/genetics , Piperazines/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Receptor, Fibroblast Growth Factor, Type 3/genetics , Animals , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/drug effects , Cell Transformation, Neoplastic/genetics , Humans , Mice , NIH 3T3 Cells , Neoplasms/drug therapy , Neoplasms/pathology , Phosphorylation/drug effects , Signal Transduction/drug effects
9.
J Comput Aided Mol Des ; 29(12): 1109-22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26572910

ABSTRACT

In drug discovery, prediction of binding affinity ahead of synthesis to aid compound prioritization is still hampered by the low throughput of the more accurate methods and the lack of general pertinence of one method that fits all systems. Here we show the applicability of a method based on density functional theory using core fragments and a protein model with only the first shell residues surrounding the core, to predict relative binding affinity of a matched series of mineralocorticoid receptor (MR) antagonists. Antagonists of MR are used for treatment of chronic heart failure and hypertension. Marketed MR antagonists, spironolactone and eplerenone, are also believed to be highly efficacious in treatment of chronic kidney disease in diabetes patients, but is contra-indicated due to the increased risk for hyperkalemia. These findings and a significant unmet medical need among patients with chronic kidney disease continues to stimulate efforts in the discovery of new MR antagonist with maintained efficacy but low or no risk for hyperkalemia. Applied on a matched series of MR antagonists the quantum mechanical based method gave an R(2) = 0.76 for the experimental lipophilic ligand efficiency versus relative predicted binding affinity calculated with the M06-2X functional in gas phase and an R(2) = 0.64 for experimental binding affinity versus relative predicted binding affinity calculated with the M06-2X functional including an implicit solvation model. The quantum mechanical approach using core fragments was compared to free energy perturbation calculations using the full sized compound structures.


Subject(s)
Mineralocorticoid Receptor Antagonists/chemistry , Mineralocorticoid Receptor Antagonists/pharmacology , Receptors, Mineralocorticoid/metabolism , Crystallography, X-Ray , Humans , Hydrogen Bonding , Molecular Docking Simulation , Protein Binding , Quantum Theory , Receptors, Mineralocorticoid/chemistry
10.
ACS Med Chem Lett ; 6(3): 254-9, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25815142

ABSTRACT

The canonical Wnt pathway plays an important role in embryonic development, adult tissue homeostasis, and cancer. Germline mutations of several Wnt pathway components, such as Axin, APC, and ß-catenin, can lead to oncogenesis. Inhibition of the poly(ADP-ribose) polymerase (PARP) catalytic domain of the tankyrases (TNKS1 and TNKS2) is known to inhibit the Wnt pathway via increased stabilization of Axin. In order to explore the consequences of tankyrase and Wnt pathway inhibition in preclinical models of cancer and its impact on normal tissue, we sought a small molecule inhibitor of TNKS1/2 with suitable physicochemical properties and pharmacokinetics for hypothesis testing in vivo. Starting from a 2-phenyl quinazolinone hit (compound 1), we discovered the pyrrolopyrimidinone compound 25 (AZ6102), which is a potent TNKS1/2 inhibitor that has 100-fold selectivity against other PARP family enzymes and shows 5 nM Wnt pathway inhibition in DLD-1 cells. Moreover, compound 25 can be formulated well in a clinically relevant intravenous solution at 20 mg/mL, has demonstrated good pharmacokinetics in preclinical species, and shows low Caco2 efflux to avoid possible tumor resistance mechanisms.

11.
Bioorg Med Chem Lett ; 24(3): 870-9, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24405701

ABSTRACT

Scaffold hopping from the thiazolopyridine ureas led to thiazolopyridone ureas with potent antitubercular activity acting through inhibition of DNA GyrB ATPase activity. Structural diversity was introduced, by extension of substituents from the thiazolopyridone N-4 position, to access hydrophobic interactions in the ribose pocket of the ATP binding region of GyrB. Further optimization of hydrogen bond interactions with arginines in site-2 of GyrB active site pocket led to potent inhibition of the enzyme (IC50 2 nM) along with potent cellular activity (MIC=0.1 µM) against Mycobacterium tuberculosis (Mtb). Efficacy was demonstrated in an acute mouse model of tuberculosis on oral administration.


Subject(s)
Mycobacterium tuberculosis/drug effects , Pyridones/chemical synthesis , Thiazoles/chemical synthesis , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/pharmacology , Urea/chemical synthesis , Urea/pharmacology , Administration, Oral , Animals , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Antitubercular Agents/pharmacology , Disease Models, Animal , Inhibitory Concentration 50 , Mice , Microbial Sensitivity Tests , Molecular Structure , Pyridones/chemistry , Pyridones/pharmacology , Thiazoles/chemistry , Thiazoles/pharmacology , Topoisomerase II Inhibitors/chemistry , Urea/chemistry
12.
J Med Chem ; 56(21): 8834-48, 2013 Nov 14.
Article in English | MEDLINE | ID: mdl-24088190

ABSTRACT

A pharmacophore-based search led to the identification of thiazolopyridine ureas as a novel scaffold with antitubercular activity acting through inhibition of DNA Gyrase B (GyrB) ATPase. Evaluation of the binding mode of thiazolopyridines in a Mycobacterium tuberculosis (Mtb) GyrB homology model prompted exploration of the side chains at the thiazolopyridine ring C-5 position to access the ribose/solvent pocket. Potent compounds with GyrB IC50 ≤ 1 nM and Mtb MIC ≤ 0.1 µM were obtained with certain combinations of side chains at the C-5 position and heterocycles at the C-6 position of the thiazolopyridine core. Substitutions at C-5 also enabled optimization of the physicochemical properties. Representative compounds were cocrystallized with Streptococcus pneumoniae (Spn) ParE; these confirmed the binding modes predicted by the homology model. The target link to GyrB was confirmed by genetic mapping of the mutations conferring resistance to thiazolopyridine ureas. The compounds are bactericidal in vitro and efficacious in vivo in an acute murine model of tuberculosis.


Subject(s)
Antitubercular Agents/pharmacology , DNA Gyrase/metabolism , Mycobacterium tuberculosis/drug effects , Pyridines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Tuberculosis/drug therapy , Urea/pharmacology , Animals , Antitubercular Agents/administration & dosage , Antitubercular Agents/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/enzymology , Pyridines/administration & dosage , Pyridines/chemistry , Structure-Activity Relationship , Topoisomerase II Inhibitors/administration & dosage , Topoisomerase II Inhibitors/chemistry , Urea/analogs & derivatives , Urea/chemistry
13.
J Med Chem ; 55(22): 10136-47, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23088558

ABSTRACT

Inhibition of 11ß-HSD1 is viewed as a potential target for the treatment of obesity and other elements of the metabolic syndrome. We report here the optimization of a carboxylic acid class of inhibitors from AZD4017 (1) to the development candidate AZD8329 (27). A structural change from pyridine to pyrazole together with structural optimization led to an improved technical profile in terms of both solubility and pharmacokinetics. The extent of acyl glucuronidation was reduced through structural optimization of both the carboxylic acid and amide substituents, coupled with a reduction in lipophilicity leading to an overall increase in metabolic stability.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Benzoates/pharmacology , Enzyme Inhibitors/pharmacology , Glucuronides/metabolism , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyridines/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Adipose Tissue/drug effects , Adipose Tissue/enzymology , Animals , Benzoates/chemical synthesis , Benzoates/pharmacokinetics , Dogs , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Glucuronides/chemistry , Guinea Pigs , Humans , Liver/drug effects , Liver/enzymology , Macaca fascicularis , Mice , Models, Molecular , Molecular Structure , Protein Conformation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacokinetics , Rats , Rats, Wistar , Structure-Activity Relationship , Substrate Specificity
14.
J Med Chem ; 55(12): 5951-64, 2012 Jun 28.
Article in English | MEDLINE | ID: mdl-22691057

ABSTRACT

Inhibition of 11ß-HSD1 is an attractive mechanism for the treatment of obesity and other elements of the metabolic syndrome. We report here the discovery of a nicotinic amide derived carboxylic acid class of inhibitors that has good potency, selectivity, and pharmacokinetic characteristics. Compound 11i (AZD4017) is an effective inhibitor of 11ß-HSD1 in human adipocytes and exhibits good druglike properties and as a consequence was selected for clinical development.


Subject(s)
11-beta-Hydroxysteroid Dehydrogenase Type 1/antagonists & inhibitors , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/pharmacokinetics , Niacinamide/analogs & derivatives , Piperidines/pharmacology , Piperidines/pharmacokinetics , 11-beta-Hydroxysteroid Dehydrogenase Type 1/chemistry , 11-beta-Hydroxysteroid Dehydrogenase Type 1/metabolism , Administration, Oral , Animals , Biological Availability , Dogs , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/metabolism , Humans , Inhibitory Concentration 50 , Male , Mice , Models, Molecular , Niacinamide/administration & dosage , Niacinamide/metabolism , Niacinamide/pharmacokinetics , Niacinamide/pharmacology , Piperidines/administration & dosage , Piperidines/metabolism , Protein Conformation , Rats , Substrate Specificity
15.
J Med Chem ; 55(11): 5003-12, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22612866

ABSTRACT

The design of compounds that selectively inhibit a single kinase is a significant challenge, particularly for compounds that bind to the ATP site. We describe here how protein-ligand crystal structure information was able both to rationalize observed selectivity and to guide the design of more selective compounds. Inhibition data from enzyme and cellular screens and the crystal structures of a range of ligands tested during the process of identifying selective inhibitors of FGFR provide a step-by-step illustration of the process. Steric effects were exploited by increasing the size of ligands in specific regions in such a way as to be tolerated in the primary target and not in other related kinases. Kinases are an excellent target class to exploit such approaches because of the conserved fold and small side chain mobility of the active form.


Subject(s)
Pyrazoles/chemistry , Pyrimidines/chemistry , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Animals , Binding Sites , Crystallography, X-Ray , Dimerization , Drug Design , Humans , Ligands , Mice , Mice, Knockout , Models, Molecular , Molecular Structure , Phosphorylation , Pyrazoles/chemical synthesis , Pyrazoles/pharmacology , Pyrimidines/chemical synthesis , Pyrimidines/pharmacology , Receptor, Fibroblast Growth Factor, Type 1/chemistry , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Structure-Activity Relationship
16.
Proteins ; 74(1): 212-21, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18618707

ABSTRACT

The PP2A serine/threonine phosphatase regulates a plethora of cellular processes. In the cell the predominant form of the enzyme is a heterotrimer, formed by a core dimer composed of a catalytic and a scaffolding subunit, which assemble together with one of a range of different regulatory B subunits. Here, we present the first structure of a free non-complexed B subunit, B56 gamma. Comparison with the recent structures of a heterotrimeric complex and the core dimer reveals several significant conformational changes in the interface region between the B56 gamma and the core dimer. These allow for an assembly scheme of the PP2A holoenzyme to be put forth where B56 gamma first complexes with the scaffolding subunit and subsequently binds to the catalytic subunit and this induces the formation of a binding site for the invariant C-terminus of the catalytic subunit that locks in the complex as a last step of assembly.


Subject(s)
Protein Phosphatase 2/chemistry , Amino Acid Sequence , Animals , Binding Sites , Catalytic Domain , Escherichia coli/genetics , Holoenzymes/chemistry , Molecular Sequence Data , Protein Conformation , Protein Multimerization , Protein Phosphatase 2/isolation & purification , Protein Subunits/chemistry , Sequence Alignment
17.
J Neurochem ; 101(4): 906-17, 2007 May.
Article in English | MEDLINE | ID: mdl-17250651

ABSTRACT

Axonal growth cone guidance is a central process in nervous system development and repair. Collapsin response mediator protein 2 (CRMP-2) is a neurite extension-promoting neuronal cytosolic molecule involved in the signalling of growth inhibitory cues from external stimuli, such as semaphorin 3A and the myelin-associated glycoprotein. We have determined the crystal structure of human tetrameric CRMP-2, which is structurally related to the dihydropyriminidases; however, the active site is not conserved. The wealth of earlier functional mapping data for CRMP-2 are discussed in light of the three-dimensional structure of the protein. The differences in oligomerisation interfaces between CRMP-1 and CRMP-2 are used to model CRMP-1/2 heterotetramers.


Subject(s)
Intercellular Signaling Peptides and Proteins/chemistry , Nerve Tissue Proteins/chemistry , Animals , Cloning, Molecular/methods , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Models, Molecular , Nerve Tissue Proteins/genetics , Protein Biosynthesis/physiology
18.
Acta Crystallogr D Biol Crystallogr ; 62(Pt 11): 1294-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17057331

ABSTRACT

10-Formyltetrahydrofolate dehydrogenase is a ubiquitously expressed enzyme in the human body. It catalyses the formation of tetrahydrofolate and carbon dioxide from 10-formyltetrahydrofolate, thereby playing an important role in the human metabolism of one-carbon units. It is a two-domain protein in which the N-terminal domain hydrolyses 10-formyltetrahydrofolate into formate and tetrahydrofolate. The high-resolution crystal structure of the hydrolase domain from human 10-formyltetrahydrofolate dehydrogenase has been determined in the presence and absence of a substrate analogue. The structures reveal conformational changes of two loops upon ligand binding, while key active-site residues appear to be pre-organized for catalysis prior to substrate binding. Two water molecules in the structures mark the positions of key oxygen moieties in the catalytic reaction and reaction geometries are proposed based on the structural data.


Subject(s)
Leucovorin/analogs & derivatives , Oxidoreductases Acting on CH-NH Group Donors/chemistry , Binding Sites , Catalysis , Crystallography, X-Ray/methods , Formates/chemistry , Formates/metabolism , Humans , Leucovorin/chemistry , Leucovorin/metabolism , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Protein Structure, Secondary , Protein Structure, Tertiary , Tetrahydrofolates/chemistry , Tetrahydrofolates/metabolism
19.
Acta Crystallogr D Biol Crystallogr ; 61(Pt 11): 1550-62, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16239734

ABSTRACT

Semicarbazide-sensitive amine oxidase (SSAO) belongs to a ubiquitous family of copper-containing amine oxidases (CuAOs). SSAO is also known as vascular adhesion protein-1 (VAP-1) and has been identified as one of the adhesion molecules involved in the leukocyte-extravasation process. The structure of a truncated soluble form of human SSAO has been solved and refined to 2.5 A. As expected, SSAO is a homodimer with a fold typical of the CuAO family. The topaquinone (TPQ) cofactor and a copper ion characteristic of CuAOs are present in the active site, with the TPQ in the active ;off-copper' conformation. The structure reveals that a leucine residue (Leu469) located adjacent to the active site could function as a gate controlling its accessibility. An RGD motif is displayed on the surface, where it could be involved in integrin binding and possibly play a role in the shedding of SSAO from the membrane. Carbohydrate moieties are observed at five of six potential N-glycosylation sites. Carbohydrates attached to Asn232 flank the active-site entrance and might influence substrate specificity. The structure of an adduct of SSAO and the irreversible inhibitor 2-hydrazinopyridine has been solved and refined to 2.9 A resolution. Together, these structures will aid efforts to identify natural substrates, provide valuable information for the design of specific inhibitors and direct further studies.


Subject(s)
Amine Oxidase (Copper-Containing)/chemistry , Cell Adhesion Molecules/chemistry , Pyridones/chemistry , Amine Oxidase (Copper-Containing)/antagonists & inhibitors , Amino Acid Motifs , Binding Sites , Cell Adhesion Molecules/antagonists & inhibitors , Cell Line , Copper/chemistry , Crystallography, X-Ray , Dihydroxyphenylalanine/analogs & derivatives , Dihydroxyphenylalanine/chemistry , Humans , Models, Molecular , Protein Conformation , Pyridones/pharmacology
20.
Article in English | MEDLINE | ID: mdl-16511016

ABSTRACT

Human semicarbazide-sensitive amine oxidase (SSAO) is a homodimeric copper-containing monoamine oxidase that occurs in both a membrane-bound and a soluble form. SSAO is also known as vascular adhesion protein-1 (VAP-1). A truncated soluble form of human SSAO (comprising residues 29-763) was expressed in human embryonic kidney 293 cells and purified to homogeneity. Tetragonal crystals were obtained and a data set extending to 2.5 A was collected. The crystals are merohedrally twinned and the estimation of the twinning fraction was complicated by pseudo-symmetry and the anisotropic character of the crystals. Using a recently developed method for twinning detection that is insensitive to phenomena such as anisotropy or pseudo-symmetry [Padilla & Yeates (2003), Acta Cryst. D59, 1124-1130], the twinning fraction was estimated to be 0.3. The structure was eventually solved by molecular replacement in space group P4(3).


Subject(s)
Amine Oxidase (Copper-Containing)/chemistry , Amine Oxidase (Copper-Containing)/genetics , Amine Oxidase (Copper-Containing)/isolation & purification , Animals , Cell Line , Crystallization , Dimerization , Genetic Vectors , Humans , Kidney/embryology , Mammals , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Sequence Deletion , Transfection , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...