Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Skin Res Technol ; 28(1): 47-53, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34618986

ABSTRACT

BACKGROUND: An assessment of the drug penetration and distribution profiles within the skin is essential in dermatology and cosmetology. Recent advances in label-free imaging technologies have facilitated the direct detection of unlabeled compounds in tissues, with high resolution. However, it remains challenging to provide quantitative time-course distribution maps of drugs within the complex skin tissue. The present study aims at acquiring the real-time quantitative skin penetration profiles of topically applied caffeine, by means of a combination of pump-probe phase-modulated stimulated Raman scattering (PM-SRS) and confocal reflection microscopy. The recently developed PM-SRS microscopy is a unique imaging tool that can minimize strong background signals through a pulse-shaping technique, while providing high-contrast images of small molecules in tissues. MATERIALS AND METHODS: Reconstructed human skin epidermis models were used in order to analyze caffeine penetration in tissues. The penetration profiles of caffeine in an aqueous solution, an oil-in-water gel, and a water-in-oil gel were examined by combining PM-SRS and confocal reflection microscopy. RESULTS: The characteristic Raman signal of caffeine was directly detected in the skin model using PM-SRS. Integrating PM-SRS and confocal reflection microscopy allowed real-time concentration maps of caffeine to be obtained from formulation samples, within the skin model. Compared with the conventional Raman detection method, PM-SRS lowered the background tissue-oriented signals and supplied high-contrast images of caffeine. CONCLUSION: We successfully established real-time skin penetration profiles of caffeine from different formulations. PM-SRS microscopy proved to be a powerful, non-invasive, and real-time depth-profile imaging technique for use in quantitative studies of topically applied drugs.


Subject(s)
Caffeine , Epidermis , Humans , Microscopy, Confocal , Nonlinear Optical Microscopy , Skin , Spectrum Analysis, Raman
2.
Biomed Opt Express ; 12(10): 6545-6557, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34745755

ABSTRACT

Skin penetration analysis of topically applied drugs or active compounds is essential in biomedical applications. Stimulated Raman scattering (SRS) microscopy is a promising label-free skin penetration analysis tool. However, conventional SRS microcopy suffers from limited signal contrast owing to strong background signals, which prevents its use in low-concentration drug imaging. Here, we present a skin penetration analysis method of topical agents using recently developed phase-modulated SRS (PM-SRS) microscopy. PM-SRS uses phase modulation and time-resolved signal detection to suppress both nonlinear background signals and Raman background signals from a tissue. A proof-of-concept experiment with a topically applied skin moisturizing agent (ectoine) in an in vitro skin tissue model revealed that PM-SRS with 1.7-ps probe delay yields a signal contrast 40 times higher than that of conventional amplitude-modulated SRS (AM-SRS). Skin penetration measurement of a topical therapeutic drug (loxoprofen sodium) showed that the mean drug concentration at the tissue surface layer after 240 min was 47.3 ± 4.8 mM. The proposed PM-SRS microscopy can be employed to monitor the spatial and temporal pharmacokinetics of small molecules in the millimolar concentration regime.

3.
Bioorg Med Chem Lett ; 49: 128284, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34311085

ABSTRACT

Jasmonic acid (JA) is a plant hormone involved in the defense response against insects and fungi. JA is synthesized from α-linolenic acid (LA) by the octadecanoid pathway in plants. 12-oxo-Phytodienoic acid (OPDA) is one of the biosynthetic intermediates in this pathway. The reported stereo selective total synthesis of cis-(+)-OPDA is not very efficient due to the many steps involved in the reaction as well as the use of water sensitive reactions. Therefore, we developed an enzymatic method for the synthesis of OPDA using acetone powder of flax seed and allene oxide cyclase (PpAOC2) from Physcomitrella patens. From this method, natural cis-(+)-OPDA can be synthesized in the high yield of approximately 40%. In this study, we investigated the substrate specificity of the enzymatic synthesis of other OPDA analogs with successions to afford OPDA amino acid conjugates, dinor-OPDA (dn-OPDA), and OPDA monoglyceride, and it was suggested that the biosynthetic pathway of arabidopsides could occur via MGDG.


Subject(s)
Fatty Acids, Unsaturated/chemical synthesis , Intramolecular Oxidoreductases/chemistry , Plant Proteins/chemistry , Bryopsida/enzymology , Flax/enzymology , Seeds/enzymology , Stereoisomerism
4.
Mol Plant Pathol ; 21(3): 429-442, 2020 03.
Article in English | MEDLINE | ID: mdl-31965700

ABSTRACT

Salicylic acid (SA), an essential secondary messenger for plant defence responses, plays a role in maintaining a balance (trade-off) between plant growth and resistance induction, but the detailed mechanism has not been explored. Because the SA mimic benzothiadiazole (BTH) is a more stable inducer of plant defence than SA after exogenous application, we analysed expression profiles of defence genes after BTH treatment to better understand SA-mediated immune induction. Transcript levels of the salicylic acid glucosyltransferase (SAGT) gene were significantly lower in BTH-treated Nicotiana tabacum (Nt) plants than in SA-treated Nt control plants, suggesting that SAGT may play an important role in SA-related host defence responses. Treatment with BTH followed by SA suppressed SAGT transcription, indicating that the inhibitory effect of BTH is not reversible. In addition, in BTH-treated Nt and Nicotiana benthamiana (Nb) plants, an early high accumulation of SA and SA 2-O-ß-d-glucoside was only transient compared to the control. This observation agreed well with the finding that SAGT-overexpressing (OE) Nb lines contained less SA and jasmonic acid (JA) than in the Nb plants. When inoculated with a virus, the OE Nb plants showed more severe symptoms and accumulated higher levels of virus, while resistance increased in SAGT-silenced (IR) Nb plants. In addition, the IR plants restricted bacterial spread to the inoculated leaves. After the BTH treatment, OE Nb plants were slightly larger than the Nb plants. These results together indicate that SAGT has a pivotal role in the balance between plant growth and SA/JA-mediated defence for optimum plant fitness.


Subject(s)
Glucosyltransferases/metabolism , Nicotiana/immunology , Salicylic Acid/metabolism , Cyclopentanes/metabolism , Disease Resistance/genetics , Gene Expression Regulation, Plant , Oxylipins/metabolism , Plant Diseases/virology , Plant Leaves/enzymology , Thiadiazoles/metabolism , Nicotiana/growth & development , Nicotiana/virology
5.
J Nat Prod ; 80(4): 872-878, 2017 04 28.
Article in English | MEDLINE | ID: mdl-28333463

ABSTRACT

A monoglyceride (1) has been reported to possess an antibolting effect in radish (Raphanus sativus), but its absolute configuration at the C-2 position was not determined earlier. In this work, the absolute configuration of 1 was determined to be (2S), and it was also accompanied by one new (2) and two known monoglycerides (3 and 4). The chemical structure of 2 was determined as ß-(7'Z,10'Z,13'Z)-hexadecatrienoic acid monoglyceride (ß-16:3 monoglyceride). Qualitative and quantitative analytical methods for compounds 1-4 were developed, using two deuterium-labeled compounds (8 and 9) as internal standards. The results revealed a broader range of distribution of 1-4 in several annual winter crops. It was also found that these isolated compounds have an inhibitory effect on the root elongation of Arabidopsis thaliana seedlings at concentrations of 25 and 50 µM in the medium. However, the inhibitory effect of 1 was not dependent on coronatin-insensitive 1 (COI1) protein, which may suggest the involvement of an unidentified signaling system other than jasmonic acid signaling.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Monoglycerides/isolation & purification , Monoglycerides/pharmacology , Raphanus/chemistry , Arabidopsis/drug effects , Glycerides/pharmacology , Molecular Structure , Monoglycerides/chemistry , Nuclear Magnetic Resonance, Biomolecular , Plant Leaves/chemistry , Plant Roots/chemistry , Plant Roots/drug effects , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...