Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 55(9): 4322-35, 2012 May 10.
Article in English | MEDLINE | ID: mdl-22497444

ABSTRACT

Targeting glycosphingolipid synthesis has emerged as a novel approach for treating metabolic diseases. 32 (EXEL-0346) represents a new class of glucosylceramide synthase (GCS) inhibitors. This report details the elaboration of hit 8 with the goal of achieving and maintaining maximum GCS inhibition in vivo. 32 inhibited GCS with an IC(50) of 2 nM and achieved maximum hepatic GCS inhibition after four or five daily doses in rodents. Robust improvements in glucose tolerance in DIO mice and ZDF rats were observed after 2 weeks of q.d. dosing. Four weeks of dosing resulted in decreased plasma triglycerides and reduced hepatic fat deposition. Thus, 32 provides insight into the amount of metabolic regulation that can be restored following achievement of maximal target knockdown.


Subject(s)
Enzyme Inhibitors/chemical synthesis , Glucosyltransferases/antagonists & inhibitors , Phenylalanine/analogs & derivatives , Adipose Tissue, White/drug effects , Adipose Tissue, White/metabolism , Animals , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/enzymology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Female , Gangliosides/metabolism , Glucose Tolerance Test , Glucosyltransferases/metabolism , Humans , Liver/drug effects , Liver/enzymology , Magnetic Resonance Spectroscopy , Mass Spectrometry , Mice , Mice, Inbred C57BL , Mice, Nude , Phenylalanine/pharmacology , Rats , Rats, Sprague-Dawley , Rats, Zucker , Structure-Activity Relationship , Triglycerides/blood
2.
J Med Chem ; 47(10): 2422-5, 2004 May 06.
Article in English | MEDLINE | ID: mdl-15115385

ABSTRACT

The design and synthesis of the dual peroxisome proliferator activated receptor (PPAR) alpha/gamma agonist (S)-2-methyl-3-[4-[2-(5-methyl-2-thiophen-2-yl-oxazol-4-yl)ethoxy]phenyl]-2-phenoxypropionic acid (2) for the treatment of type 2 diabetes and associated dyslipidemia are described. 2 possesses a potent dual hPPAR alpha/gamma agonist profile (IC(50) = 28 and 10 nM; EC(50) = 9 and 4 nM, respectively, for hPPARalpha and hPPARgamma). In preclinical models, 2 substantially improves insulin sensitivity and potently reverses diabetic hyperglycemia while significantly improving overall lipid homeostasis.


Subject(s)
Hypoglycemic Agents/chemical synthesis , Hypolipidemic Agents/chemical synthesis , Phenylpropionates/chemical synthesis , Receptors, Cytoplasmic and Nuclear/agonists , Thiophenes/chemical synthesis , Transcription Factors/agonists , Animals , Binding, Competitive , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Female , Humans , Hyperlipidemias/drug therapy , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Hypolipidemic Agents/chemistry , Hypolipidemic Agents/pharmacology , Phenylpropionates/chemistry , Phenylpropionates/pharmacology , Radioligand Assay , Rats , Rats, Zucker , Stereoisomerism , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...