Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Chem Biol Interact ; 382: 110608, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37369263

ABSTRACT

Current risk assessments for environmental carcinogens rely on animal studies utilizing doses orders of magnitude higher than actual human exposures. Epidemiological studies of people with high exposures (e.g., occupational) are of value, but rely on uncertain exposure data. In addition, exposures are typically not to a single chemical but to mixtures, such as polycyclic aromatic hydrocarbons (PAHs). The extremely high sensitivity of accelerator mass spectrometry (AMS) allows for dosing humans with known carcinogens with de minimus risk. In this study UPLC-AMS was used to assess the toxicokinetics of [14C]-benzo[a]pyrene ([14C]-BaP) when dosed alone or in a binary mixture with phenanthrene (Phe). Plasma was collected for 48 h following a dose of [14C]-BaP (50 ng, 5.4 nCi) or the same dose of [14C]-BaP plus Phe (1250 ng). Following the binary mixture, Cmax of [14C]-BaP significantly decreased (4.4-fold) whereas the volume of distribution (Vd) increased (2-fold). Further, the toxicokinetics of twelve [14C]-BaP metabolites provided evidence of little change in the metabolite profile of [14C]-BaP and the pattern was overall reduction consistent with reduced absorption (decrease in Cmax). Although Phe was shown to be a competitive inhibitor of the major hepatic cytochrome P-450 (CYP) responsible for metabolism of [14C]-BaP, CYP1A2, the high inhibition constant (Ki) and lack of any increase in unmetabolized [14C]-BaP in plasma makes this mechanism unlikely to be responsible. Rather, co-administration of Phe reduces the absorption of [14C]-BaP through a mechanism yet to be determined. This is the first study to provide evidence that, at actual environmental levels of exposure, the toxicokinetics of [14C]-BaP in humans is markedly altered by the presence of a second PAH, Phe, a common component of environmental PAH mixtures.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Animals , Humans , Benzo(a)pyrene/toxicity , Toxicokinetics , Phenanthrenes/toxicity , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Mass Spectrometry
2.
Toxicol Appl Pharmacol ; 460: 116377, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36642108

ABSTRACT

Utilizing the atto-zeptomole sensitivity of UPLC-accelerator mass spectrometry (UPLC-AMS), we previously demonstrated significant first-pass metabolism following escalating (25-250 ng) oral micro-dosing in humans of [14C]-benzo[a]pyrene ([14C]-BaP). The present study examines the potential for supplementation with Brussels sprouts (BS) or 3,3'-diindolylmethane (DIM) to alter plasma levels of [14C]-BaP and metabolites over a 48-h period following micro-dosing with 50 ng (5.4 nCi) [14C]-BaP. Volunteers were dosed with [14C]-BaP following fourteen days on a cruciferous vegetable restricted diet, or the same diet supplemented for seven days with 50 g of BS or 300 mg of BR-DIM® prior to dosing. BS or DIM reduced total [14C] recovered from plasma by 56-67% relative to non-intervention. Dietary supplementation with DIM markedly increased Tmax and reduced Cmax for [14C]-BaP indicative of slower absorption. Both dietary treatments significantly reduced Cmax values of four downstream BaP metabolites, consistent with delaying BaP absorption. Dietary treatments also appeared to reduce the T1/2 and the plasma AUC(0,∞) for Unknown Metabolite C, indicating some effect in accelerating clearance of this metabolite. Toxicokinetic constants for other metabolites followed the pattern for [14C]-BaP (metabolite profiles remained relatively consistent) and non-compartmental analysis did not indicate other significant alterations. Significant amounts of metabolites in plasma were at the bay region of [14C]-BaP irrespective of treatment. Although the number of subjects and large interindividual variation are limitations of this study, it represents the first human trial showing dietary intervention altering toxicokinetics of a defined dose of a known human carcinogen.


Subject(s)
Benzo(a)pyrene , Carcinogens , Humans , Dietary Supplements , Toxicokinetics
3.
Article in English | MEDLINE | ID: mdl-36669256

ABSTRACT

Accelerator mass spectrometry (AMS) is the method of choice for quantitation of low amounts of 14C-labeled biomolecules. Despite exquisite sensitivity, an important limitation of AMS is its inability to provide structural information about the analyte. This limitation is not critical when the labeled compounds are well-characterized prior to AMS analysis. However, analyte identity is important in other experiments where, for example, a compound is metabolized and the structures of its metabolites are not known. We previously described a moving wire interface that enables direct AMS measurement of liquid sample in the form of discrete drops or HPLC eluent without the need for individual fraction collection, termed liquid sample-AMS (LS-AMS). We now report the coupling of LS-AMS with a molecular mass spectrometer, providing parallel accelerator and molecular mass spectrometry (PAMMS) detection of analytes separated by liquid chromatography. The repeatability of the method was examined by performing repeated injections of 14C-labeled tryptophan, and relative standard deviations of the 14C peak areas were ≤10.57% after applying a normalization factor based on a standard. Five 14C-labeled amino acids were separated and detected to provide simultaneous quantitative AMS and structural MS data, and AMS results were compared with solid sample-AMS (SS-AMS) data using Bland-Altman plots. To demonstrate the utility of the workflow, yeast cells were grown in a medium with 14C-labeled tryptophan. The cell extracts were analyzed by PAMMS, and 14C was detected in tryptophan and its metabolite kynurenine.


Subject(s)
Amino Acids , Tryptophan , Chromatography, High Pressure Liquid , Mass Spectrometry/methods , Chromatography, Liquid
4.
Methods Mol Biol ; 2349: 1-10, 2022.
Article in English | MEDLINE | ID: mdl-34718988

ABSTRACT

Parallel accelerator and molecular mass spectrometry (PAMMS) is a powerful analytical technique capable of simultaneous quantitation of carbon-14 tracer and structural characterization of 14C-labeled biomolecules. Here we describe the use of PAMMS for the analysis of biological molecules separated by high-performance liquid chromatography. This protocol is intended to serve as a guide for researchers who need to perform PAMMS experiments using instrumentation available at resource centers such as the National User Resource for Biological Accelerator Mass Spectrometry at Lawrence Livermore National Laboratory.


Subject(s)
Chromatography, High Pressure Liquid , Carbon Radioisotopes , Mass Spectrometry
5.
Toxicol Appl Pharmacol ; 438: 115830, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34933053

ABSTRACT

Dibenzo[def,p]chrysene (DBC) is an environmental polycyclic aromatic hydrocarbon (PAH) that causes tumors in mice and has been classified as a probable human carcinogen by the International Agency for Research on Cancer. Animal toxicity studies often utilize higher doses than are found in relevant human exposures. Additionally, like many PAHs, DBC requires metabolic bioactivation to form the ultimate toxicant, and species differences in DBC and DBC metabolite metabolism have been observed. To understand the implications of dose and species differences, a physiologically based pharmacokinetic model (PBPK) for DBC and major metabolites was developed in mice and humans. Metabolism parameters used in the model were obtained from experimental in vitro metabolism assays using mice and human hepatic microsomes. PBPK model simulations were evaluated against mice dosed with 15 mg/kg DBC by oral gavage and human volunteers orally microdosed with 29 ng of DBC. DBC and its primary metabolite DBC-11,12-diol were measured in blood of mice and humans, while in urine, the majority of DBC metabolites were obeserved as conjugated DBC-11,12-diol, conjugated DBC tetrols, and unconjugated DBC tetrols. The PBPK model was able to predict the time course concentrations of DBC, DBC-11,12-diol, and other DBC metabolites in blood and urine of human volunteers and mice with reasonable accuracy. Agreement between model simulations and measured pharmacokinetic data in mice and human studies demonstrate the success and versatility of our model for interspecies extrapolation and applicability for different doses. Furthermore, our simulations show that internal dose metrics used for risk assessment do not necessarily scale allometrically, and that PBPK modeling provides a reliable approach to appropriately account for interspecies differences in metabolism and physiology.


Subject(s)
Chrysenes/administration & dosage , Chrysenes/pharmacokinetics , Cystine/analogs & derivatives , Animals , Carcinogens/administration & dosage , Carcinogens/pharmacokinetics , Cystine/administration & dosage , Cystine/pharmacokinetics , Female , Humans , Male , Mice , Models, Biological , Neoplasms/chemically induced
6.
Environ Int ; 159: 107045, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34920278

ABSTRACT

Benzo[a]pyrene (BaP) is formed by incomplete combustion of organic materials (petroleum, coal, tobacco, etc.). BaP is designated by the International Agency for Research on Cancer as a group 1 known human carcinogen; a classification supported by numerous studies in preclinical models and epidemiology studies of exposed populations. Risk assessment relies on toxicokinetic and cancer studies in rodents at doses 5-6 orders of magnitude greater than average human uptake. Using a dose-response design at environmentally relevant concentrations, this study follows uptake, metabolism, and elimination of [14C]-BaP in human plasma by employing UPLC - accelerator mass spectrometry (UPLC-AMS). Volunteers were administered 25, 50, 100, and 250 ng (2.7-27 nCi) of [14C]-BaP (with interceding minimum 3-week washout periods) with quantification of parent [14C]-BaP and metabolites in plasma measured over 48 h. [14C]-BaP median Tmax was 30 min with Cmax and area under the curve (AUC) approximating dose-dependency. Marked inter-individual variability in plasma pharmacokinetics following a 250 ng dose was seen with 7 volunteers as measured by the Cmax (8.99 ± 7.08 ng × mL-1) and AUC0-48hr (68.6 ± 64.0 fg × hr-1 × mL-1). Approximately 3-6% of the [14C] recovered (AUC0-48 hr) was parent compound, demonstrating extensive metabolism following oral dosing. Metabolite profiles showed that, even at the earliest time-point (30 min), a substantial percentage of [14C] in plasma was polar BaP metabolites. The best fit modeling approach identified non-compartmental apparent volume of distribution of BaP as significantly increasing as a function of dose (p = 0.004). Bay region tetrols and dihydrodiols predominated, suggesting not only was there extensive first pass metabolism but also potentially bioactivation. AMS enables the study of environmental carcinogens in humans with de minimus risk, allowing for important testing and validation of physiologically based pharmacokinetic models derived from animal data, risk assessment, and the interpretation of data from high-risk occupationally exposed populations.


Subject(s)
Benzo(a)pyrene , Carcinogens , Animals , Benzo(a)pyrene/pharmacokinetics , Humans , Mass Spectrometry , Risk Assessment
7.
Nucl Instrum Methods Phys Res B ; 530: 1-7, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-38390228

ABSTRACT

The Lawrence Livermore National Laboratory - Center for Accelerator Mass Spectrometry (LLNL/CAMS) 1 MV AMS system was converted from a biomedical AMS instrument to a natural abundance 14C spectrometer. The system is equipped with a gas-accepting hybrid ion source capable of measuring both solid (graphite) and gaseous (CO2) samples. Here we describe a series of experiments intended to establish and optimize 14CO2 measurement capabilities at natural abundance levels. A maximum instantaneous ionization efficiency of 8 % was achieved with 3 % CO2 in helium at a flow rate of approximately 220 µL/min (3.5 µg C/min). For modern materials (e.g., OX I) we measured an average of 240 ± 50 14C counts/µg C, equivalent to a total system efficiency of approximately 3 %. Experimental CO2 samples with F14C values ranging from 0.20 to 1.05 measured as both graphite and directly as CO2 gas produced equivalent values with an average offset of < 2σ.

8.
Toxicol Sci ; 183(1): 49-59, 2021 08 30.
Article in English | MEDLINE | ID: mdl-34460930

ABSTRACT

Impregnating military uniforms and outdoor clothing with the insecticide permethrin is an approach to reduce exposure to insect borne diseases and to repel pests and disease vectors such as mosquitos and sandflies, but the practice exposes wearers to prolonged dermal exposure to the pesticide. Key metabolite(s) from a low dose dermal exposure of permethrin were identified using accelerator mass spectrometry. Metabolite standards were synthesized and a high performance liquide chromatography (HPLC) elution protocol to separate individual metabolites in urine was developed. Six human subjects were exposed dermally on the forearm to 25 mg of permethrin containing 1.0 µCi of 14C for 8 h. Blood, saliva and urine samples were taken for 7d. Absorption/elimination rates and metabolite concentrations varied by individual. Average absorption was 0.2% of the dose. Serum concentrations rose until 12-24 h postdermal application then rapidly declined reaching predose levels by 72 h. Maximum saliva excretion occurred 6 h postdosing. The maximum urinary excretion rate occurred during 12-24 h; average elimination half-life was 56 h. 3-Phenoxybenzyl alcohol glucuronide was the most abundant metabolite identified when analyzing elution fractions, but most of the radioactivity was in still more polar fractions suggesting extensive degradative metabolism and for which there were no standards. Analyses of archived urine samples with the ultra performance liquid chromatography-accelerator mass spectrometry-mass spectrometry (UPLC-AMS-MS) system isolated a distinct polar metabolite but it was much diminished from the previous analyses a decade earlier.


Subject(s)
Insecticides , Permethrin , Animals , Biomarkers , Chromatography, High Pressure Liquid , Humans , Mass Spectrometry
9.
Am J Clin Nutr ; 113(5): 1115-1125, 2021 05 08.
Article in English | MEDLINE | ID: mdl-33675348

ABSTRACT

BACKGROUND: The dietary polyphenol resveratrol prevents various malignancies in preclinical models, including prostate cancer. Despite attempts to translate findings to humans, gaps remain in understanding pharmacokinetic-pharmacodynamic relations and how tissue concentrations affect efficacy. Such information is necessary for dose selection and is particularly important given the low bioavailability of resveratrol. OBJECTIVES: This study aimed to determine concentrations of resveratrol in prostate tissue of men after a dietary-achievable (5 mg) or pharmacological (1 g) dose. We then examined whether clinically relevant concentrations of resveratrol/its metabolites had direct anticancer activity in prostate cell lines. METHODS: A window trial was performed in which patients were allocated to 5 mg or 1 g resveratrol daily, or no intervention, before prostate biopsy. Patients (10/group) ingested resveratrol capsules for 7-14 d before biopsy, with the last dose [14C]-labeled, allowing detection of resveratrol species in prostate tissue using accelerator MS. Cellular uptake and antiproliferative properties of resveratrol/metabolites were assessed in cancer and nonmalignant cell cultures using HPLC with UV detection and cell counting, respectively. RESULTS: [14C]-Resveratrol species were detectable in prostate tissue of all patients analyzed, with mean ± SD concentrations of 0.08 ± 0.04 compared with 22.1 ± 8.2 pmol/mg tissue for the 5 mg and the 1 g dose, respectively. However, total [14C]-resveratrol equivalents in prostate were lower than we previously reported in plasma and colorectum after identical doses. Furthermore, resveratrol was undetectable in prostate tissue; instead, sulfate and glucuronide metabolites dominated. Although resveratrol reduced prostate cell numbers in vitro over 7 d, the concentrations required (≥10 µM) exceeded the plasma maximum concentration. Resveratrol mono-sulfates and glucuronides failed to consistently inhibit cell growth, partly due to poor cellular uptake. CONCLUSIONS: Low tissue concentrations of resveratrol species, coupled with weak antiproliferative activity of its conjugates, suggest daily doses of ≤1 g may not have direct effects on human prostate.This trial was registered at clinicaltrialsregister.eu as EudraCT 2007-002131-91.


Subject(s)
Prostate/metabolism , Resveratrol/metabolism , Resveratrol/pharmacokinetics , Administration, Oral , Antioxidants/administration & dosage , Antioxidants/metabolism , Antioxidants/pharmacokinetics , Antioxidants/therapeutic use , Carbon Radioisotopes , Cell Line, Tumor , Diet , Dose-Response Relationship, Drug , Drug Administration Routes , Humans , Isotope Labeling , Male , Prostatic Neoplasms/prevention & control , Resveratrol/administration & dosage , Resveratrol/therapeutic use
10.
Nucl Instrum Methods Phys Res B ; 499: 124-132, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-38344059

ABSTRACT

The Lawrence Livermore National Laboratory - Center for Accelerator Mass Spectrometry compact 1 MV biomedical accelerator mass spectrometer was repurposed and optimized for the semi-automated radiocarbon measurement of natural abundance environmental samples. Substantial efforts were made to greatly improve instrument precision and develop semi-automation capabilities for unattended operation. Here we present results from 15 months of routine system operation and evaluate the system performance based on 30 sample wheels measured with directly comparable operating conditions over 7 months from August 2019 to March 2020. Unattended operation was enabled through software that tracks specific error conditions and can initiate a complete instrument shutdown when specific criteria were met. The average measurement precision was found to be 2.7 ± 0.7 ‰ based on repeated measurements of OX I standards. Accuracy was assessed with measurements of standard materials with known 14C-content, spanning 0.5 to 1.5 modern, and by comparison to split samples measured with the 10 MV FN AMS system. We also assessed sample size and age limitations using 14C-free materials, finding that we can routinely analyze samples as small as 300 µg C and less than 33000 years without the need for size-specific correction protocols.

11.
Toxics ; 7(2)2019 May 09.
Article in English | MEDLINE | ID: mdl-31075884

ABSTRACT

This review summarizes recent developments in radiocarbon tracer technology and applications. Technologies covered include accelerator mass spectrometry (AMS), including conversion of samples to graphite, and rapid combustion to carbon dioxide to enable direct liquid sample analysis, coupling to HPLC for real-time AMS analysis, and combined molecular mass spectrometry and AMS for analyte identification and quantitation. Laser-based alternatives, such as cavity ring down spectrometry, are emerging to enable lower cost, higher throughput measurements of biological samples. Applications covered include radiocarbon dating, use of environmental atomic bomb pulse radiocarbon content for cell and protein age determination and turnover studies, and carbon source identification. Low dose toxicology applications reviewed include studies of naphthalene-DNA adduct formation, benzo[a]pyrene pharmacokinetics in humans, and triclocarban exposure and risk assessment. Cancer-related studies covered include the use of radiocarbon-labeled cells for better defining mechanisms of metastasis and the use of drug-DNA adducts as predictive biomarkers of response to chemotherapy.

12.
Chem Res Toxicol ; 31(10): 1080-1085, 2018 10 15.
Article in English | MEDLINE | ID: mdl-30230318

ABSTRACT

We have documented that the herbicide propanil is immunotoxic in mice, and our in vitro tissue culture experiments largely recapitulate the in vivo studies. Laboratory studies on environmental contaminants are the most meaningful when these studies are conducted using concentrations that approximate levels in the environment. Many techniques to measure the distribution and pharmacokinetics (PK) on compounds rely on techniques, such as liquid scintillation counting (LSC) of radio-labeled starting compound, that require concentrations higher than environmental levels. The aim of this study was to compare tissue PK after exposure to propanil concentrations more relevant to levels of exposure to agricultural workers and the general population to concentrations previously reported for laboratory studies. To this end, we conducted a study to measure propanil distribution in three immune organs, using ultrasensitive accelerator mass spectrometry (AMS). We used two doses: the lower dose modeled levels expected in the environment or long-term occupational exposure to low doses, while the higher dose was to model the effects of an accidental exposure. Our results showed that the distribution and PK profiles from these two different concentrations was markedly different. The profile of the high dose (concentration) exposure was indicative of saturation of the detoxifying capability of the animal. In contrast, at the lower environmentally relevant concentration, in vivo concentrations of propanil in spleen, liver, and blood dropped to a very low level by 720 min. In conclusion, these studies highlight the differences in PK of propanil at these two doses, which suggests that the toxicity of this chemical should be re-investigated to obtain better data on toxic effects at doses relevant for humans.


Subject(s)
Herbicides/pharmacokinetics , Propanil/pharmacokinetics , Animals , Carbon Radioisotopes/chemistry , Dose-Response Relationship, Drug , Female , Half-Life , Herbicides/blood , Herbicides/pharmacology , Liver/drug effects , Liver/metabolism , Mice , Mice, Inbred C57BL , Propanil/blood , Propanil/pharmacology , Spleen/drug effects , Spleen/metabolism
13.
Food Chem Toxicol ; 115: 136-147, 2018 May.
Article in English | MEDLINE | ID: mdl-29518434

ABSTRACT

Benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), is a known human carcinogen. In non-smoking adults greater than 95% of BaP exposure is through diet. The carcinogenicity of BaP is utilized by the U.S. EPA to assess relative potency of complex PAH mixtures. PAH relative potency factors (RPFs, BaP = 1) are determined from high dose animal data. We employed accelerator mass spectrometry (AMS) to determine pharmacokinetics of [14C]-BaP in humans following dosing with 46 ng (an order of magnitude lower than human dietary daily exposure and million-fold lower than animal cancer models). To assess the impact of co-administration of food with a complex PAH mixture, humans were dosed with 46 ng of [14C]-BaP with or without smoked salmon. Subjects were asked to avoid high BaP-containing diets and a 3-day dietary questionnaire given to assess dietary exposure prior to dosing and three days post-dosing with [14C]-BaP. Co-administration of smoked salmon, containing a complex mixture of PAHs with an RPF of 460 ng BaPeq, reduced and delayed absorption. Administration of canned commercial salmon, containing very low amounts of PAHs, showed the impacts on pharmacokinetics were not due to high amounts of PAHs but rather a food matrix effect.


Subject(s)
Benzo(a)pyrene/pharmacokinetics , Carcinogens/pharmacokinetics , Fish Products/analysis , Salmon/metabolism , Adult , Aged , Animals , Benzo(a)pyrene/metabolism , Carbon Radioisotopes/analysis , Carcinogens/metabolism , Cooking , Female , Fish Products/adverse effects , Food Safety , Humans , Male , Middle Aged , Polycyclic Aromatic Hydrocarbons/metabolism , Polycyclic Aromatic Hydrocarbons/pharmacokinetics , Young Adult
14.
Chem Res Toxicol ; 29(10): 1641-1650, 2016 10 17.
Article in English | MEDLINE | ID: mdl-27494294

ABSTRACT

Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in nonsmokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a microdose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel "moving wire" interface between ultraperformance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself (Cmax = 18.5 ±15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ±1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax = 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax = 29.4 ± 11.6 pg/pool, Tmax = 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first data set to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.


Subject(s)
Benzopyrenes/metabolism , Benzopyrenes/pharmacokinetics , Adult , Aged , Benzopyrenes/analysis , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Female , Healthy Volunteers , Humans , Male , Mass Spectrometry , Middle Aged , Molecular Structure , Young Adult
15.
Anal Chem ; 88(17): 8714-9, 2016 09 06.
Article in English | MEDLINE | ID: mdl-27458740

ABSTRACT

A cavity ring-down spectroscopy (CRDS) instrument was developed using mature, robust hardware for the measurement of carbon-14 in biological studies. The system was characterized using carbon-14 elevated glucose samples and returned a linear response up to 387 times contemporary carbon-14 concentrations. Carbon-14 free and contemporary carbon-14 samples with varying carbon-13 concentrations were used to assess the method detection limit of approximately one-third contemporary carbon-14 levels. Sources of inaccuracies are presented and discussed, and the capability to measure carbon-14 in biological samples is demonstrated by comparing pharmacokinetics from carbon-14 dosed guinea pigs analyzed by both CRDS and accelerator mass spectrometry. The CRDS approach presented affords easy access to powerful carbon-14 tracer techniques that can characterize complex biochemical systems.


Subject(s)
Glucose/analysis , Spectrum Analysis/methods , Carbon Radioisotopes
16.
Methods Mol Biol ; 1105: 147-57, 2014.
Article in English | MEDLINE | ID: mdl-24623226

ABSTRACT

Accelerator mass spectrometry (AMS) is a highly sensitive technique used for the quantification of adducts following exposure to carbon-14- or tritium-labeled chemicals, with detection limits in the range of one adduct per 10(11)-10(12) nucleotides. The protocol described in this chapter provides an optimal method for isolating and preparing DNA samples to measure isotope-labeled DNA adducts by AMS. When preparing samples, special precautions must be taken to avoid cross-contamination of isotope among samples and produce a sample that is compatible with AMS. The DNA isolation method described is based upon digestion of tissue with proteinase K, followed by extraction of DNA using Qiagen isolation columns. The extracted DNA is precipitated with isopropanol, washed repeatedly with 70 % ethanol to remove salt, and then dissolved in water. DNA samples are then converted to graphite or titanium hydride and the isotope content measured by AMS to quantify adduct levels. This method has been used to reliably generate good yields of uncontaminated, pure DNA from animal and human tissues for analysis of adduct levels.


Subject(s)
DNA Adducts/isolation & purification , Animals , DNA Adducts/chemistry , Humans , Isotope Labeling , Mass Spectrometry
17.
Anal Chem ; 85(7): 3644-50, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23413773

ABSTRACT

Quantitation of low-abundance protein modifications involves significant analytical challenges, especially in biologically important applications, such as studying the role of post-translational modifications in biology and measurement of the effects of reactive drug metabolites. (14)C labeling combined with accelerator mass spectrometry (AMS) provides exquisite sensitivity for such experiments. Here, we demonstrate real-time (14)C quantitation of high-performance liquid chromatography (HPLC) separations by liquid sample accelerator mass spectrometry (LS-AMS). By enabling direct HPLC-AMS coupling, LS-AMS overcomes several major limitations of conventional HPLC-AMS, where individual HPLC fractions must be collected and converted to graphite before measurement. To demonstrate LS-AMS and compare the new technology to traditional solid sample AMS (SS-AMS), reduced and native bovine serum albumin (BSA) was modified by (14)C-iodoacetamide, with and without glutathione present, producing adducts on the order of 1 modification in every 10(6) to 10(8) proteins. (14)C incorporated into modified BSA was measured by solid carbon AMS and LS-AMS. BSA peptides were generated by tryptic digestion. Analysis of HPLC-separated peptides was performed in parallel by LS-AMS, fraction collection combined with SS-AMS, and (for peptide identification) electrospray ionization and tandem mass spectrometry (ESI-MS/MS). LS-AMS enabled (14)C quantitation from ng sample sizes and was 100 times more sensitive to (14)C incorporated in HPLC-separated peptides than SS-AMS, resulting in a lower limit of quantitation of 50 zmol (14)C/peak. Additionally, LS-AMS turnaround times were minutes instead of days, and HPLC trace analyses required 1/6th the AMS instrument time required for analysis of graphite fractions by SS-AMS.


Subject(s)
Chromatography, High Pressure Liquid/instrumentation , Mass Spectrometry/instrumentation , Peptides/analysis , Serum Albumin, Bovine/chemistry , Amino Acid Sequence , Animals , Carbon Isotopes/analysis , Cattle , Equipment Design , Glutathione/chemistry , Iodoacetamide/chemistry , Molecular Sequence Data , Oxidation-Reduction
18.
Methods Mol Biol ; 613: 103-18, 2010.
Article in English | MEDLINE | ID: mdl-19997880

ABSTRACT

There have been many attempts in the past to determine whether significant levels of Adriamycin-DNA adducts form in cells and contribute to the anticancer activity of this agent. Supraclincal drug levels have been required to study drug-DNA adducts because of the lack of sensitivity associated with many of the techniques employed, including liquid scintillation counting of radiolabeled drug. The use of accelerator mass spectrometry (AMS) has provided the first direct evidence of Adriamycin-DNA adduct formation in cells at clinically relevant Adriamycin concentrations. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection (compared to liquid scintillation counting) and has revealed adduct formation within an hour of drug treatment. The rigorous protocol required for this approach, together with many notes on the precautions and procedures required in order to ensure that absolute levels of Adriamycin-DNA adducts can be determined with good reproducibility, is outlined in this chapter.


Subject(s)
Antineoplastic Agents/metabolism , DNA Adducts/metabolism , Doxorubicin/metabolism , Mass Spectrometry/methods , Analytic Sample Preparation Methods , Antineoplastic Agents/isolation & purification , Cell Line, Tumor , DNA Adducts/isolation & purification , Doxorubicin/pharmacology , Humans , Laboratories , Reproducibility of Results
19.
Nucleic Acids Res ; 36(16): e100, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18632763

ABSTRACT

Limited sensitivity of existing assays has prevented investigation of whether Adriamycin-DNA adducts are involved in the anti-tumour potential of Adriamycin. Previous detection has achieved a sensitivity of a few Adriamycin-DNA adducts/10(4) bp DNA, but has required the use of supra-clinical drug concentrations. This work sought to measure Adriamycin-DNA adducts at sub-micromolar doses using accelerator mass spectrometry (AMS), a technique with origins in geochemistry for radiocarbon dating. We have used conditions previously validated (by less sensitive decay counting) to extract [(14)C]Adriamycin-DNA adducts from cells and adapted the methodology to AMS detection. Here we show the first direct evidence of Adriamycin-DNA adducts at clinically-relevant Adriamycin concentrations. [(14)C]Adriamycin treatment (25 nM) resulted in 4.4 +/- 1.0 adducts/10(7) bp ( approximately 1300 adducts/cell) in MCF-7 breast cancer cells, representing the best sensitivity and precision reported to date for the covalent binding of Adriamycin to DNA. The exceedingly sensitive nature of AMS has enabled over three orders of magnitude increased sensitivity of Adriamycin-DNA adduct detection and revealed adduct formation within an hour of drug treatment. This method has been shown to be highly reproducible for the measurement of Adriamycin-DNA adducts in tumour cells in culture and can now be applied to the detection of these adducts in human tissues.


Subject(s)
Antibiotics, Antineoplastic/analysis , DNA Adducts/analysis , Doxorubicin/analysis , Mass Spectrometry/methods , Antibiotics, Antineoplastic/administration & dosage , Antibiotics, Antineoplastic/chemistry , Cell Line, Tumor , DNA Adducts/chemistry , Doxorubicin/administration & dosage , Doxorubicin/chemistry , Humans , Mass Spectrometry/instrumentation , Particle Accelerators
20.
Anal Chem ; 75(9): 2192-6, 2003 May 01.
Article in English | MEDLINE | ID: mdl-12720362

ABSTRACT

The growth of accelerator mass spectrometry as a tool for quantitative isotope ratio analysis in the biosciences necessitates high-throughput sample preparation. A method has been developed to convert CO(2) obtained from carbonaceous samples to solid graphite for highly sensitive and precise (14)C quantification. Septa-sealed vials are used along with commercially available disposable materials, eliminating sample cross contamination, minimizing complex handling, and keeping per sample costs low. Samples containing between 0.25 and 10 mg of total carbon can be reduced to graphite in approximately 4 h in routine operation. Approximately 150 samples per 8-h day can be prepared by a single technician.


Subject(s)
Biochemistry/instrumentation , Carbon Dioxide/analysis , Carbon Isotopes , Carbon Radioisotopes , Graphite , Mass Spectrometry , Zinc/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...