Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Plant Biol ; 20(1): 496, 2020 Oct 29.
Article in English | MEDLINE | ID: mdl-33121443

ABSTRACT

BACKGROUND: TaCKX wheat gene family members (GFMs) encode the enzyme cytokinin oxidase/dehydrogenase (CKX), which irreversibly degrades cytokinins. The genes are important regulators of cytokinin content and take part in growth and development, with a major impact on yield-related traits. The goal of this research was to test whether these genes might be differentially expressed in the field compared to laboratory conditions and consequently differently affect plant development and yield. RESULTS: We compared expression and crosstalk of the TaCKX GFMs and TaNAC2-5A gene in modern varieties grown in a growth chamber (GC) and in the field and looked for differences in their impact on yield-related traits. The TaNAC2-5A gene was included in the research since it was expected to play an important role in co-regulation of these genes. The range of relative expression levels of TaCKX GFMs and TaNAC2-5A gene among tested cultivars was from 5 for TaCKX8 to more than 100 for TaCKX9 in the GC and from 6 for TaCKX8 to 275 for TaCKX10 in the field. The range was similar for four of them in the GC, but was much higher for seven others and TaNAC2-5A in the field. The TaCKX GFMs and TaNAC2-5A form co-expression groups, which differ depending on growth conditions. Consequently, the genes also differently regulate yield-related traits in the GC and in the field. TaNAC2-5A took part in negative regulation of tiller number and CKX activity in seedling roots only in controlled GC conditions. Grain number and grain yield were negatively regulated by TaCKX10 in the GC but positively by TaCKX8 and others in the field. Some of the genes, which were expressed in seedling roots, negatively influenced tiller number and positively regulated seedling root weight, CKX activity in the spikes, thousand grain weight (TGW) as well as formation of semi-empty spikes. CONCLUSIONS: We have documented that: 1) natural variation in expression levels of tested genes in both environments is very high, indicating the possibility of selection of beneficial genotypes for breeding purposes, 2) to create a model of an ideotype for breeding, we need to take into consideration the natural environment.


Subject(s)
Genes, Plant/genetics , Oxidoreductases/genetics , Plant Proteins/genetics , Triticum/genetics , Crop Production , Environment , Gene Expression Regulation, Plant , Genes, Plant/physiology , Oxidoreductases/physiology , Plant Proteins/physiology , Quantitative Trait, Heritable , Triticum/enzymology , Triticum/growth & development
2.
Int J Mol Sci ; 21(13)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645965

ABSTRACT

TaCKX, Triticum aestivum (cytokinin oxidase/dehydrogenase) family genes influence the development of wheat plants by the specific regulation of cytokinin content in different organs. However, their detailed role is not known. The TaCKX1, highly and specifically expressed in developing spikes and in seedling roots, was silenced by RNAi-mediated gene silencing via Agrobacterium tumefaciens and the effect of silencing was investigated in 7 DAP (days after pollination) spikes of T1 and T2 generations. Various levels of TaCKX1 silencing in both generations influence different models of co-expression with other TaCKX genes and parameters of yield-related traits. Only a high level of silencing in T2 resulted in strong down-regulation of TaCKX11 (3), up-regulation of TaCKX2.1, 2.2, 5, and 9 (10), and a high yielding phenotype. This phenotype is characterized by a higher spike number, grain number, and grain yield, but lower thousand grain weight (TGW). The content of most of cytokinin forms in 7 DAP spikes of silenced T2 lines increased from 23% to 76% compared to the non-silenced control. The CKs cross talk with other phytohormones. Each of the tested yield-related traits is regulated by various up- or down-regulated TaCKX genes and phytohormones. The coordinated effect of TaCKX1 silencing on the expression of other TaCKX genes, phytohormone levels in 7 DAP spikes, and yield-related traits in silenced T2 lines is presented.


Subject(s)
Gene Expression Regulation, Plant/genetics , Genes, Plant/genetics , Plant Proteins/genetics , Triticum/genetics , Cytokinins/genetics , Down-Regulation/genetics , Edible Grain/genetics , Oxidoreductases/genetics , Phenotype , Plant Growth Regulators/genetics , Plant Leaves/genetics , Plant Roots/genetics , Plants, Genetically Modified/genetics , Seedlings/genetics
3.
PLoS One ; 14(4): e0214239, 2019.
Article in English | MEDLINE | ID: mdl-30969991

ABSTRACT

Multigene families of CKX genes encode cytokinin oxidase/dehydrogenase proteins (CKX), which regulate cytokinin content in organs of developing plants. It has already been documented that some of them play important roles in plant productivity. The presented research is the first step of comprehensive characterization of the bread wheat TaCKX gene family with the goal to select genes determining yield-related traits. The specificity of expression patterns of fifteen formerly annotated members of the TaCKX family was tested in different organs during wheat development. Based on this, the genes were assigned to four groups: TaCKX10, TaCKX5 and TaCKX4, highly specific to leaves; TaCKX3, TaCKX6 and TaCKX11, expressed in various levels through all the organs tested; TaCKX1, TaCKX2.3, TaCKX2.2, TaCKX2.1, TaCKX2.4 and TaCKX2.5 specific to developing spikes and inflorescences; TaCKX9, TaCKX8 and TaCKX7, highly specific to roots. Amplification products of tested genes were mapped to the chromosomes of the A, B or D genome using T. aestivum Ensembl Plants. Based on analysis of TaCKX transcripts as well as encoded amino acids in T. aestivum and Hordeum vulgare the number of CKX genes in wheat was limited to 11 and new numbering of selected TaCKX genes was proposed. Moreover, we found that there were developmental differences in expression of TaCKX in the first and the second spike and expression of some of the genes was daily time dependent. A very high and significant correlation was found between expression levels of TaCKX7 and TaCKX9, genes specific to seedling roots, TaCKX1, TaCKX2.1 and TaCKX2.2, specific to developing spikes, and the group of TaCKX3, 4, 5, 6, 10 and 11, highly expressed in leaves and other organs. The genes also co-operated among organs and were included in two groups representing younger or maturating stages of developing plants. The first group was represented by seedling roots, leaves from 4-week old plants, inflorescences and 0 DAP spikes; the second by developing spikes, 0 DAP, 7 DAP and 14 DAP. The key genes which might determine yield-related traits are indicated and their possible roles in breeding strategies are discussed.


Subject(s)
Multigene Family/genetics , Organogenesis, Plant/genetics , Oxidoreductases/genetics , Triticum/genetics , Cytokinins/genetics , Gene Expression Regulation, Plant/genetics , Phylogeny , Plant Development/genetics , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Roots/genetics , Plant Roots/growth & development , Seedlings/growth & development , Triticum/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...