Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 11(3): e0459822, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37140374

ABSTRACT

We characterized the population of Staphylococcus aureus from patients with atopic dermatitis (AD) in terms of (i) genetic diversity, (ii) presence and functionality of genes encoding important virulence factors: staphylococcal enterotoxins (sea, seb, sec, sed), toxic shock syndrome 1 toxin (tsst-1), and Panton-Valentine leukocidin (lukS/lukF-PV) by spa typing, PCR, drug resistance profile determination, and Western blot. We then subjected the studied population of S. aureus to photoinactivation based on a light-activated compound called rose bengal (RB) to verify photoinactivation as an approach to effectively kill toxin-producing S. aureus. We have obtained 43 different spa types that can be grouped into 12 clusters, indicating for the first-time clonal complex (CC) 7 as the most widespread. A total of 65% of the tested isolates had at least one gene encoding the tested virulence factor, but their distribution differed between the group of children and adults, and between patients with AD and the control group without atopy. We detected a 3.5% frequency of methicillin-resistant strains (MRSA) and no other multidrug resistance. Despite genetic diversity and production of various toxins, all isolates tested were effectively photoinactivated (bacterial cell viability reduction ≥ 3 log10 units) under safe conditions for the human keratinocyte cell line, which indicates that photoinactivation can be a good option in skin decolonization. IMPORTANCE Staphylococcus aureus massively colonizes the skin of patients with atopic dermatitis (AD). It is worth noting that the frequency of detection of multidrug-resistant S. aureus (MRSA) in AD patients is higher than the healthy population, which makes treatment much more difficult. Information about the specific genetic background of S. aureus accompanying and/or causing exacerbations of AD is of great importance from the point of view of epidemiological investigations and the development of possible treatment options.


Subject(s)
Dermatitis, Atopic , Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Adult , Child , Humans , Staphylococcus aureus , Dermatitis, Atopic/genetics , Staphylococcal Infections/microbiology , Virulence Factors/genetics , Genetic Structures , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology
2.
Front Med (Lausanne) ; 8: 642609, 2021.
Article in English | MEDLINE | ID: mdl-34055830

ABSTRACT

Photodynamic inactivation of microorganisms (aPDI) is an excellent method to destroy antibiotic-resistant microbial isolates. The use of an exogenous photosensitizer or irradiation of microbial cells already equipped with endogenous photosensitizers makes aPDI a convenient tool for treating the infections whenever technical light delivery is possible. Currently, aPDI research carried out on a vast repertoire of depending on the photosensitizer used, the target microorganism, and the light delivery system shows efficacy mostly on in vitro models. The search for mechanisms underlying different responses to photodynamic inactivation of microorganisms is an essential issue in aPDI because one niche (e.g., infection site in a human body) may have bacterial subpopulations that will exhibit different susceptibility. Rapidly growing bacteria are probably more susceptible to aPDI than persister cells. Some subpopulations can produce more antioxidant enzymes or have better performance due to efficient efflux pumps. The ultimate goal was and still is to identify and characterize molecular features that drive the efficacy of antimicrobial photodynamic inactivation. To this end, we examined several genetic and biochemical characteristics, including the presence of individual genetic elements, protein activity, cell membrane content and its physical properties, the localization of the photosensitizer, with the result that some of them are important and others do not appear to play a crucial role in the process of aPDI. In the review, we would like to provide an overview of the factors studied so far in our group and others that contributed to the aPDI process at the cellular level. We want to challenge the question, is there a general pattern of molecular characterization of aPDI effectiveness? Or is it more likely that a photosensitizer-specific pattern of molecular characteristics of aPDI efficacy will occur?

3.
Sci Rep ; 10(1): 16354, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004977

ABSTRACT

Staphylococcal enterotoxin B (SEB), encoded by the seb gene, is a virulence factor produced by Staphylococcus aureus that is involved mainly in food poisoning and is known to act as an aggravating factor in patients with atopic dermatitis. Research results in animal infection models support the concept that superantigens, including SEB contribute to sepsis and skin and soft tissue infections. In contrast to antibiotics, antimicrobial photodynamic inactivation (aPDI) is a promising method to combat both bacterial cells and virulence factors. The main aims of this research were to (1) select the most stable reference genes under sublethal aPDI treatments and (2) evaluate the impact of aPDI on seb. Two aPDI combinations were applied under sublethal conditions: rose bengal (RB) and green light (λmax = 515 nm) and new methylene blue (NMB) and red light (λmax = 632 nm). The stability of ten candidate reference genes (16S rRNA, fabD, ftsZ, gmk, gyrB, proC, pyk, rho, rpoB and tpiA) was evaluated upon aPDI using four software packages-BestKeeper, geNorm, NormFinder and RefFinder. Statistical analyses ranked ftsZ and gmk (RB + green light) and ftsZ, proC, and fabD (NMB + red light) as the most stable reference genes upon photodynamic treatment. Our studies showed downregulation of seb under both aPDI conditions, suggesting that aPDI could decrease the level of virulence factors.


Subject(s)
Enterotoxins/genetics , Gene Expression Regulation , Genes, Essential , Staphylococcus aureus/genetics , Virulence Factors
4.
Front Microbiol ; 11: 567090, 2020.
Article in English | MEDLINE | ID: mdl-33505363

ABSTRACT

Atopic dermatitis (AD) patients are massively colonized with Staphylococcus aureus (S. aureus) in lesional and non-lesional skin. A skin infection may become systemic if left untreated. Of interest, the incidence of multi-drug resistant S. aureus (MRSA) in AD patients is higher as compared to a healthy population, which makes treatment even more challenging. Information on the specific genetic background of S. aureus accompanying and/or causing AD flares would be of great importance in terms of possible treatment option development. In this review, we summarized the data on the prevalence of S. aureus in general in AD skin, and the prevalence of specific clones that might be associated with flares of eczema. We put our special interest in the presence and role of staphylococcal enterotoxins as important virulence factors in the epidemiology of AD-derived S. aureus. Also, we summarize the present and potentially useful future anti-staphylococcal treatment.

5.
Future Med Chem ; 11(5): 443-461, 2019 03.
Article in English | MEDLINE | ID: mdl-30901231

ABSTRACT

The emergence of antimicrobial drug resistance requires development of alternative therapeutic options. Multidrug-resistant strains of Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumanii, Pseudomonas aeruginosa and Enterobacter spp. are still the most commonly identified antimicrobial-resistant pathogens. These microorganisms are part of the so-called 'ESKAPE' pathogens to emphasize that they currently cause the majority of hospital acquired infections and effectively 'escape' the effects of antibacterial drugs. Thus, alternative, safer and more efficient antimicrobial strategies are urgently needed, especially against 'ESKAPE' superbugs. Antimicrobial photodynamic inactivation is a therapeutic option used in the treatment of infectious diseases. It is based on a combination of a photosensitizer, light and oxygen to remove highly metabolically active cells.


Subject(s)
Anti-Bacterial Agents/chemistry , Bacterial Infections/drug therapy , Drug Resistance, Multiple, Bacterial/drug effects , Photosensitizing Agents/chemistry , Animals , Anti-Bacterial Agents/pharmacology , Combined Modality Therapy , Humans , Light , Photochemical Processes , Photosensitizing Agents/pharmacology
6.
Front Microbiol ; 9: 1949, 2018.
Article in English | MEDLINE | ID: mdl-30177928

ABSTRACT

Due to the overuse of antibiotics in medicine and food production, and their targeted mechanism of action, an increasing rate in spreading of antibiotic resistance genes has been noticed. This results in inefficient therapy outcomes and higher mortality all over the world. Pseudomonas aeruginosa (carbapenem-resistant) is considered one of the top three critical species according to the World Health Organization's priority pathogens list. This means that new drugs and/or treatments are needed to tackle infections caused by this bacterium. In this context search for new/alternative approaches that would overcome resistance to classical antimicrobials is of prime importance. The use of antimicrobial photodynamic inactivation (aPDI) and antimicrobial peptides (AMPs) is an efficient strategy to treat localized infections caused by multidrug-resistant P. aeruginosa. In this study, we have treated P. aeruginosa cells photodynamically in the presence and in the absence of AMP (CAMEL or pexiganan). The conditions for aPDI were as follows: rose bengal (RB) as a photosensitizing agent at 1-10 µM concentration, and subsequent irradiation with 514 nm-LED at 23 mW/cm2 irradiance. The analysis of cell number after the treatment has shown that the combined action of RB-mediated aPDI and cationic AMPs reduced the number of viable cells below the limit of detection (<1log10 CFU/ml). This was in contrast to no reduction or partial reduction after aPDI or AMP applied separately. Students t-test was applied to test the statistical significance of the results. Noteworthy, our treatment proved to be effective against all 35 clinical isolates of P. aeruginosa tested within this study, including those characterized as multiresistant. Moreover, we demonstrated that such treatment is safe and does not violate the growth dynamics of human keratinocytes (77.3-97.64% survival depending on the concentration of the studied compounds or their mixtures).

SELECTION OF CITATIONS
SEARCH DETAIL
...