Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chembiochem ; 18(8): 816-823, 2017 04 18.
Article in English | MEDLINE | ID: mdl-28160372

ABSTRACT

Chemical modifications can enhance the properties of DNA by imparting nuclease resistance and generating more-diverse physical structures. However, native DNA polymerases generally cannot synthesize significant lengths of DNA with modified nucleotide triphosphates. Previous efforts have identified a mutant of DNA polymerase I from Thermus aquaticus DNA (SFM19) as capable of synthesizing a range of short, 2'-modified DNAs; however, it is limited in the length of the products it can synthesize. Here, we rationally designed and characterized ten mutants of SFM19. From this, we identified enzymes with substantially improved activity for the synthesis of 2'F-, 2'OH-, 2'OMe-, and 3'OMe-modified DNA as well as for reverse transcription of 2'OMe DNA. We also evaluated mutant DNA polymerases previously only tested for synthesis for 2'OMe DNA and showed that they are capable of an expanded range of modified DNA synthesis. This work significantly expands the known combinations of modified DNA and Taq DNA polymerase mutants.


Subject(s)
DNA Polymerase I/chemistry , DNA/chemical synthesis , Taq Polymerase/chemistry , DNA/chemistry , DNA Polymerase I/genetics , Manganese/chemistry , Mutation , Protein Engineering , RNA/chemical synthesis , Reverse Transcription , Taq Polymerase/genetics
2.
Biochemistry ; 54(38): 5999-6008, 2015 Sep 29.
Article in English | MEDLINE | ID: mdl-26334839

ABSTRACT

Chemical modifications to DNA, such as 2' modifications, are expected to increase the biotechnological utility of DNA; however, these modified forms of DNA are limited by their inability to be effectively synthesized by DNA polymerase enzymes. Previous efforts have identified mutant Thermus aquaticus DNA polymerase I (Taq) enzymes capable of recognizing 2'-modified DNA nucleotides. While these mutant enzymes recognize these modified nucleotides, they are not capable of synthesizing full length modified DNA; thus, further engineering is required for these enzymes. Here, we describe comparative biochemical studies that identify useful, but previously uncharacterized, properties of these enzymes; one enzyme, SFM19, is able to recognize a range of 2'-modified nucleotides much wider than that previously examined, including fluoro, azido, and amino modifications. To understand the molecular origins of these differences, we also identify specific amino acids and combinations of amino acids that contribute most to the previously evolved unnatural activity. Our data suggest that a negatively charged amino acid at 614 and mutation of the steric gate residue, E615, to glycine make up the optimal combination for modified oligonucleotide synthesis. These studies yield an improved understanding of the mutational origins of 2'-modified substrate recognition as well as identify SFM19 as the best candidate for further engineering, whether via rational design or directed evolution.


Subject(s)
Nucleotides/metabolism , Protein Engineering , Taq Polymerase/genetics , Thermus/enzymology , Nucleotides/chemistry , Point Mutation , Taq Polymerase/chemistry , Taq Polymerase/metabolism , Thermus/chemistry , Thermus/genetics , Thermus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...