Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 28(29): e202200030, 2022 May 19.
Article in English | MEDLINE | ID: mdl-35312101

ABSTRACT

In this work, adsorption properties of the UiO-66 metal-organic framework were investigated, with particular emphasis on the influence of structural defects. A series of UiO-66 samples were synthesized and characterized using a wide range of experimental techniques. Type I adsorption isotherms for low-temperature adsorption of N2 and Ar showed that micropore volume and specific surface area significantly increase with the number of defects. Adsorption of hexane isomers in UiO-66 was studied by means of quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) experimental and Monte Carlo simulation techniques. QE-TPDA profiles revealed that only defect-free UiO-66 exhibits distinct two adsorption states. This technique also yielded high-quality adsorption isobars that were successfully recreated using Grand-Canonical Monte Carlo molecular simulations, which, however, required refinement of the existing force fields. The calculations demonstrated the detailed mechanism of adsorption and separation of hexane isomers in the UiO-66 structure. The preferred tetrahedral cages provide suitable voids for bulky molecules, which is the reason for unusual "reverse" selectivity of UiO-66 towards di-branched alkanes. Interconnection of the tetrahedral cavities due to missing organic linkers greatly reduces the selectivity of the defected material.

2.
Chem Sci ; 12(26): 9176-9188, 2021 Jul 07.
Article in English | MEDLINE | ID: mdl-34276948

ABSTRACT

While metal-organic frameworks (MOFs) are at the forefront of cutting-edge porous materials, extraordinary sorption properties can also be observed in Prussian Blue Analogs (PBAs) and related materials comprising extremely short bridging ligands. Herein, we present a bimetallic nonporous cyanide-bridged coordination polymer (CP) {[Mn(imH)]2[Mo(CN)8]} n (1Mn; imH = imidazole) that can efficiently and reversibly capture and release water molecules over tens of cycles without any fatigue despite being based on one of the shortest bridging ligands known - the cyanide. The sorption performance of {[Mn(imH)]2[Mo(CN)8]} n matches or even outperforms MOFs that are typically selected for water harvesting applications with perfect sorption reversibility and very low desorption temperatures. Water sorption in 1Mn is possible due to the breathing effect (accompanied by a dramatic cyanide-framework transformation) occurring in three well-defined steps between four different crystal phases studied structurally by X-ray diffraction structural analysis. Moreover, the capture of H2O by 1Mn switches the EPR signal intensity of the MnII centres, which has been demonstrated by in situ EPR measurements and enables monitoring of the hydration level of 1Mn by EPR. The sorption of water in 1Mn controls also its photomagnetic behavior at the cryogenic regime, thanks to the presence of the [MoIV(CN)8]4- photomagnetic chromophore in the structure. These observations demonstrate the extraordinary sorption potential of cyanide-bridged CPs and the possibility to merge it with the unique physical properties of this class of compounds arising from their bimetallic character (e.g. photomagnetism and long-range magnetic ordering).

3.
Chemistry ; 26(49): 11187-11198, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32227503

ABSTRACT

Discrete molecular species that can perform certain functions in response to multiple external stimuli constitute a special class of multifunctional molecular materials called smart molecules. Herein, cyanido-bridged coordination clusters {[FeII (2-pyrpy)2 ]4 [MIV (CN)8 ]2 }⋅4 MeOH⋅6 H2 O (M=Mo (1 solv), M=W (2 solv) and 2-pyrpy=2-(1-pyrazolyl)pyridine are presented, which show persistent solvent driven single-crystal-to-single-crystal transformations upon sorption/desorption of water and methanol molecules. Three full desolvation-resolvation cycles with the concomitant change of the host molecules do not damage the single crystals. More importantly, the Fe4 M2 molecules constitute a unique example where the presence of the guests directly affects the pressure-induced thermal spin crossover (SCO) phenomenon occurring at the FeII centres. The hydrated phases show a partial SCO with approximately two out-of-four FeII centres undergoing a gradual thermal SCO at 1 GPa, while in the anhydrous form the pressure-induced SCO effect is almost quenched with only 15 % of the FeII centres undergoing high-spin to low-spin transition at 1 GPa.

SELECTION OF CITATIONS
SEARCH DETAIL
...