Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
2.
Radiol Phys Technol ; 15(4): 291-297, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35932415

ABSTRACT

Current dosimetry protocols specify an effective point of measurement (EPOM) shift of 0.6r for a cylindrical ionization chamber in photon beams. However, prior studies have reported that this shift was excessively large. The objective of this study was to experimentally evaluate the EPOM shifts in photon beams for cylindrical ionization chambers, which are widely used in clinical practice, and thus determine the appropriate EPOM shift. A microdiamond detector, which is a semiconductor detector with a small sensitive volume, was used as a reference detector, and the EPOM shifts of 11 types of cylindrical ionization chambers were evaluated at 6 MV and 10 MV. The depth shift from the percent depth dose (PDD) of the reference detector to that of the evaluated chamber was calculated using the least-squares method and was defined as the EPOM shift. The EPOM shift of the 10 MV condition was slightly larger than that of the 6 MV condition. However, because this trend was not observed for all chambers, the results of the two energies were averaged, and the EPOM shifts were determined to be 0.33r-0.43r (± 0.05) for 10 types of ionization chambers, and 0.03r (± 0.03) for the A1SL chamber. The shifts for all ionization chambers were smaller than 0.6r, indicating that the recommended EPOM shifts were overestimated and the absorbed dose was underestimated at the calibration depth. Hence, the appropriate EPOM shift of the 10 types of ionization chambers was 0.4r (the geometric center of the A1SL chamber), with a dose uncertainty of 0.05%.


Subject(s)
Electrons , Radiometry , Radiometry/methods , Photons , Uncertainty
3.
J Appl Clin Med Phys ; 23(8): e13645, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35789532

ABSTRACT

We aim to evaluate the basic characteristics of SRS MapCHECK (SRSMC) for CyberKnife (CK) and establish a dose verification system using SRSMC for the tumor-tracking irradiation for CK. The field size and angular dependence of SRSMC were evaluated for basic characterization. The output factors (OPFs) and absolute doses measured by SRSMC were compared with those measured using microDiamond and microchamber detectors and those calculated by the treatment planning system (TPS). The angular dependence was evaluated by comparing the SRSMC with a microchamber. The tumor-tracking dose verification system consists of SRSMC and a moving platform. The doses measured using SRSMC were compared with the doses measured using a microchamber and radiochromic film. The OPFs and absolute doses of SRSMC were within ±3.0% error for almost all field sizes, and the angular dependence was within ±2.0% for all incidence angles. The absolute dose errors between SRSMC and TPS tended to increase when the field size was smaller than 10 mm. The absolute doses of the tumor-tracking irradiation measured using SRSMC and those measured using a microchamber agreed within 1.0%, and the gamma pass rates of SRSMC in comparison with those of the radiochromic film were greater than 95%. The basic characteristics of SRSMC for CK presented acceptable results for clinical use. The results of the tumor-tracking dose verification system realized using SRSMC were equivalent to those of conventional methods, and this system is expected to contribute toward improving the efficiency of quality control in many facilities.


Subject(s)
Neoplasms , Radiosurgery , Humans , Neoplasms/radiotherapy , Neoplasms/surgery , Radiometry/methods , Radiosurgery/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods
4.
Phys Med ; 91: 121-130, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34785490

ABSTRACT

PURPOSE: We developed an x-ray-opaque-marker (XOM) system with inserted fiducial markers for patient-specific quality assurance (QA) in CyberKnife (Accuray) and a general-purpose linear accelerator (linac). The XOM system can be easily inserted or removed from the existing patient-specific QA phantom. Our study aimed to assess the utility of the XOM system by evaluating the recognition accuracy of the phantom position error and estimating the dose perturbation around a marker. METHODS: The recognition accuracy of the phantom position error was evaluated by comparing the known error values of the phantom position with the values measured by matching the images with target locating system (TLS; Accuray) and on-board imager (OBI; Varian). The dose perturbation was evaluated for 6 and 10 MV single-photon beams through experimental measurements and Monte Carlo simulations. RESULTS: The root mean squares (RMSs) of the residual position errors for the recognition accuracy evaluation in translations were 0.07 mm with TLS and 0.30 mm with OBI, and those in rotations were 0.13° with TLS and 0.15° with OBI. The dose perturbation was observed within 1.5 mm for 6 MV and 2.0 mm for 10 MV from the marker. CONCLUSIONS: Sufficient recognition accuracy of the phantom position error was achieved using our system. It is unnecessary to consider the dose perturbation in actual patient-specific QA. We concluded that the XOM system can be utilized to ensure quantitative and accurate phantom positioning in patient-specific QA with CyberKnife and a general-purpose linac.


Subject(s)
Particle Accelerators , Radiotherapy Planning, Computer-Assisted , Humans , Monte Carlo Method , Phantoms, Imaging , X-Rays
5.
Radiol Phys Technol ; 14(4): 390-395, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34490553

ABSTRACT

This study aimed to evaluate changes in the deformation of the entrance window on a phantom for a horizontal beam geometry with a window thickness of 5 mm. The window deformation over time was measured using a dial indicator for 12 h after water filling. The window deformation was in the range of 0.17-0.37 mm among the three phantoms. The change in deformation over time was found to be 0.06 mm or less 12 h after filling the phantom. For off-center measurements, the maximum difference in variation among the five points in each of the three phantoms was 0.12, 0.11, and 0.07 mm. The window deformation on the phantom for a horizontal beam geometry with the window thickness of 5 mm was considered almost negligible when appropriately used. However, it is important to control the quality of the phantom according to the usage conditions.


Subject(s)
Water , Phantoms, Imaging
6.
J Appl Clin Med Phys ; 22(7): 306-312, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34085364

ABSTRACT

PURPOSE: Medical physicists use a suitable detector connected to an electrometer to measure radiotherapy beams. Each detector and electrometer has a lifetime (due to physical deterioration of detector components and electrical characteristic deterioration in electronic electrometer components), long-term stability [according to IEC 60731:2011, ≤0.5% (reference-class dosimeter)], and calibration frequency [according to Muir et al. (J Appl Clin Med Phys. 2017; 18:182-190), generally 2 years]; thus, physicists should check the electrometer and detector separately. However, to the best of our knowledge, only one study (Blad et al., Phys Med Biol. 1998; 43:2385-2391) has reported checking the electrometer independently from the detector. The present study conducts performance checks on electrometers separately from the detector in clinical settings, using an electrometer equipped with a direct current (DC) generator (EMF 521R) capable of injecting DC (effective range: ±20 pA to ±20 nA) into itself or another electrometer. METHODS: First, to check the nonlinearity of the generated currents from ±20 pA to ±20 nA, charges generated from the DC generator were measured with the EMF 521R electrometer. Next, six reference-class electrometers classified according to IEC 60731:2011 were checked for repeatability at a current of ±20 pA or a minimum effective indicated value meeting IEC 60731:2011, as well as for nonlinearity within the current range from ±20 pA to ±20 nA. RESULTS: The nonlinearities for the measured currents were less than ±0.05%. The repeatability for the six electrometers was < 0.1%. While the nonlinearity of one electrometer reached up to 0.22% at a current of -20 pA, all six electrometers displayed nonlinearities of less than ±0.1% at currents of ±100 pA or higher. CONCLUSIONS: This work suggests that it is possible to check the nonlinearity and repeatability of clinical electrometers with DCs above the ±30 pA level using a DC generator in a clinic.


Subject(s)
Electronics , Radiometry , Calibration , Humans
7.
Phys Med ; 86: 98-105, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34082183

ABSTRACT

PURPOSE: Equipment refurbishment was performed to remove the beam-hardening filter (BHF) from the CyberKnife system (CK). This study aimed to confirm the change in the beam characteristics between the conventional CK (present-BHF CK) and CK after the BHF was removed (absent-BHF CK) and evaluate the impact of BHF removal on the beam quality correction factors kQ. METHODS: The experimental measurements of the beam characteristics of the present- and absent-BHF CKs were compared. The CKs were modeled using Monte Carlo simulations (MCs). The energy fluence spectra were calculated using MCs. Finally, kQ were estimated by combining the MC results and analytic calculations based on the TRS-398 and TRS-483 approaches. RESULTS: All gamma values for percent depth doses and beam profiles between each CK were less than 0.5 following the 3%/1 mm criteria. The percentage differences for tissue-phantom ratios at depths of 20 and 10 cm and percentage depth doses at 10 cm between each CK were -1.20% and -0.97%, respectively. The MC results demonstrated that the photon energy fluence spectrum of the absent-BHF CK was softer than that of the present-BHF CK. The kQ values for the absent-BHF CK were in agreement within 0.02% with those for the present-BHF CK. CONCLUSIONS: The photon energy fluence spectrum was softened by the removal of BHF. However, no remarkable impact was observed for the measured beam characteristics and kQ. Therefore, the previous findings of the kQ values for the present-BHF CK can be directly used for the absent-BHF CK.


Subject(s)
Algorithms , Radiotherapy Planning, Computer-Assisted , Monte Carlo Method , Photons , Radiometry
8.
Med Phys ; 48(1): 488-499, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33216999

ABSTRACT

PURPOSE: We developed a novel and simple method to measure the source positions in applicators directly for high-dose-rate (HDR) brachytherapy based on Cherenkov emission imaging, and evaluated the performance. METHODS: The light emission from plastic applicators used in cervical cancer treatments, irradiated by an 192 Ir γ-ray source, was captured using a charge-coupled device camera. Moreover, we attached plastics of different shapes, including tapes, tubes, and plates to a metal applicator, to use as screens for the Cherenkov imaging. We determined the source positions and dwell intervals from the light profiles along with the applicator and compared these with preset values and dummy marker measurements. RESULTS: The source positions and dwell intervals measured from the light images were comparable to the dummy marker measurements and preset values. The distance from the applicator tip to the first source positions agreed with the dummy marker measurements within 0.2 mm for the plastic tandem. The dwell intervals measured using the Cherenkov method agreed with the preset values within 0.6 mm. The distances measured with three plastic types on the metal applicator also agreed with the dummy marker measurements within 0.2 mm. The dwell intervals measured using the plastic tape agreed with the preset values within 0.7 mm. CONCLUSIONS: The proposed method should be suitable for rapid and easy quality assurance (QA) investigations in HDR brachytherapy, as it enables source position using a single image. The method allows for real-time, filmless measurements of the source positions to be obtained and is useful for rapid feedback in QA procedures.


Subject(s)
Brachytherapy , Uterine Cervical Neoplasms , Diagnostic Imaging , Female , Humans , Phantoms, Imaging , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted
11.
Phys Eng Sci Med ; 43(3): 1101-1111, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32785883

ABSTRACT

Containing 80% tungsten by weight, tungsten functional paper (TFP) is a radiation-shielding material that is lightweight, flexible, disposable, and easy to cut. Through experimental measurements and Monte Carlo simulations, we investigated the feasibility of using TFP as a bolus in electron beam radiotherapy. Commercial boluses of thickness 5 and 10 mm and from one to nine layers of TFPs (0.3-2.7 mm) were positioned on the surface of water-equivalent phantoms. The percentage depth dose curves and transverse dose profiles were measured using a 9-MeV electron beam from a clinical linear accelerator. Normalized to the value at the depth of maximum dose without bolus, the relative doses at the phantom surface for no bolus, 5-mm bolus, 10-mm bolus, 1 TFP, 3 TFPs, 6 TFPs, and 9 TFPs were 78%, 88%, 92%, 84%, 92%, 102%, and 112%, respectively; the therapeutic depths corresponding to a 90% dose level were 29.1 mm, 22.7 mm, 17.7 mm, 26.6 mm, 23.2 mm, 19.3 mm, and 15.8 mm, respectively. The TFP contributed to increased skin dose and provided dose uniformity within the target volume. However, it also resulted in increased lateral constriction and penumbra width. The results of Monte Carlo simulation produced similar trends as the experimental measurements. Our findings suggest that using TFP as a novel thin and flexible skin bolus for electron beam radiotherapy is feasible.


Subject(s)
Electrons , Radiation Dose Hypofractionation , Tungsten/chemistry , Computer Simulation , Dose-Response Relationship, Radiation , Feasibility Studies , Gamma Rays , Monte Carlo Method , Phantoms, Imaging , Radiotherapy Dosage
12.
Med Phys ; 47(3): 1391-1403, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31913508

ABSTRACT

PURPOSE: In the previous treatment planning system (TPS) for CyberKnife (CK), multileaf collimator (MLC)-based treatment plans could be created only by using the finite-size pencil beam (FSPB) algorithm. Recently, a new TPS, including the FSPB with lateral scaling option (FSPB+) and Monte Carlo (MC) algorithms, was developed. In this study, we performed basic and clinical end-to-end evaluations for MLC-based CK tumor-tracking radiotherapy using the MC, FSPB+, and FSPB. METHODS: Water- and lung-equivalent slab phantoms were combined to obtain the percentage depth dose (PDD) and off-center ratio (OCR). The CK M6 system and Precision TPS were employed, and PDDs and OCRs calculated by the MC, FSPB+, and FSPB were compared with the measured doses obtained for 30.8 × 30.8 mm2 and 60.0 × 61.6 mm2 fields. A lung motion phantom was used for clinical evaluation and MLC-based treatment plans were created using the MC. The doses were subsequently recalculated using the FSPB+ and FSPB, while maintaining the irradiation parameters. The calculated doses were compared with the doses measured using a microchamber (for target doses) or a radiochromic film (for dose profiles). The dose volume histogram (DVH) indices were compared for all plans. RESULTS: In homogeneous and inhomogeneous phantom geometries, the PDDs calculated by the MC and FSPB+ agreed with the measurements within ±2.0% for the region between the surface and a depth of 250 mm, whereas the doses calculated by the FSPB in the lung-equivalent phantom region were noticeably higher than the measurements, and the maximum dose differences were 6.1% and 4.4% for the 30.8 × 30.8 mm2 and 60.0 × 61.6 mm2 fields, respectively. The maximum distance to agreement values of the MC, FSPB+, and FSPB at the penumbra regions of OCRs were 1.0, 0.6, and 1.1 mm, respectively, but the best agreement was obtained between the MC-calculated curve and measurements at the boundary of the water- and lung-equivalent slabs, compared with those of the FSPB+ and FSPB. For clinical evaluations using the lung motion phantom, under the static motion condition, the dose errors measured by the microchamber were -1.0%, -1.9%, and 8.8% for MC, FSPB+, and FSPB, respectively; their gamma pass rates for the 3%/2 mm criterion comparing to film measurement were 98.4%, 87.6%, and 31.4% respectively. Under respiratory motion conditions, there was no noticeable decline in the gamma pass rates. In the DVH indices, for most of the gross tumor volume and planning target volume, significant differences were observed between the MC and FSPB, and between the FSPB+ and FSPB. Furthermore, significant differences were observed for lung Dmean , V15 Gy , and V20 Gy between the MC, FSPB+, and FSPB. CONCLUSIONS: The results indicate that the doses calculated using the MC and FSPB+ differed remarkably in inhomogeneous regions, compared with the FSPB. Because the MC was the most consistent with the measurements, it is recommended for final dose calculations in inhomogeneous regions such as the lung. Furthermore, the sufficient accuracy of dose delivery using MLC-based tumor-tracking radiotherapy by CK was demonstrated for clinical implementation.


Subject(s)
Algorithms , Monte Carlo Method , Radiation Dosage , Radiotherapy Planning, Computer-Assisted/methods , Humans , Lung Neoplasms/physiopathology , Lung Neoplasms/radiotherapy , Movement , Phantoms, Imaging , Radiotherapy Dosage , Respiration
14.
Radiat Prot Dosimetry ; 184(1): 28-35, 2019 Jul 01.
Article in English | MEDLINE | ID: mdl-30339247

ABSTRACT

The aim of this work is to optimize an additional collimator in a beam delivery system to reduce neutron exposure to patients in passive carbon-ion therapy. All studies were performed by Monte Carlo simulation assuming the beam delivery system at Heavy-Ion Medical Accelerator in Chiba. We calculated the neutron ambient dose equivalent at patient positions with an additional collimator, and optimized the position, aperture size and material of the collimator to reduce the neutron ambient dose equivalent. The collimator located 125 and 470 cm upstream from the isocenter could reduce the dose equivalent near the isocenter by 35%, while the collimator located 813 cm upstream from the isocenter was ineffective. As for the material of the collimator, iron and nickel could conduct reduction slightly better than aluminum and polymethyl methacrylate. The additional collimator is an effective method for the reduction of the neutron ambient dose equivalent near the isocenter.


Subject(s)
Algorithms , Heavy Ion Radiotherapy/instrumentation , Heavy Ion Radiotherapy/standards , Monte Carlo Method , Neutrons , Phantoms, Imaging , Radiotherapy Planning, Computer-Assisted/methods , Computer Simulation , Humans , Radiotherapy Dosage
15.
Med Phys ; 46(2): 1037-1043, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30500984

ABSTRACT

PURPOSE: Phantoms for horizontal beam geometry can avoid issues in vertical-beam geometry, such as change in chamber depth due to evaporation, and defining the origin at the water surface. However, their thin entrance windows would deform when these phantoms are filled, which can change the chamber depth, as pointed out by The International Atomic Energy Agency (IAEA) TRS-398. Currently, few reports (Arib et al., J Appl Clin Med Phys. 2006; 7:55-64, and Kinoshita et al., Rep Pract Oncol Radiother. 2018; 23:199-206) are available with practical data on window deformation. Therefore, we investigated the influence of entrance window deformation on chamber depths in water phantoms and the measurements in various beam modalities. METHODS: To examine widely used phantoms and phantoms with different characteristics, three phantom types were investigated (the number of phantoms investigated appears in parentheses): PTW-type 41023 (2), Qualita-QWP-04 (2), and IBA-WP34 (2). Prior to the investigation, these phantoms were stored for acclimatization in a room for approximately 10 h under the following two conditions: (a) room temperature: 21 ± 2°C; (b) room temperature: 27 ± 2°C. Using a dial indicator, the centers of the windows were monitored every 30 min for 12 h immediately after the phantoms were filled, in a treatment room at the room temperature of 21 ± 2°C. RESULTS: Immediately after the phantoms were filled, the window deformation ranged from -0.07 (inward-deformation) to 0.3 mm (outward deformation) among the six phantoms, in comparison with empty phantom windows. For 12 h after the phantoms were filled, the change in the deformation was up to 0.23 mm, but typically less than 0.15 mm. CONCLUSIONS: Reference dosimetry in photon, electron, and proton beams would not be influenced significantly by these window behaviors, whereas the window deformation has a slight impact on those heavy ion beams.


Subject(s)
Neoplasms/radiotherapy , Phantoms, Imaging , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/methods , Calibration , Electrons/therapeutic use , Humans , Photons/therapeutic use , Radiometry/instrumentation , Radiometry/methods , Radiotherapy Dosage , Reference Standards , Water
16.
17.
Rep Pract Oncol Radiother ; 23(3): 199-206, 2018.
Article in English | MEDLINE | ID: mdl-29760594

ABSTRACT

BACKGROUND: Uncertainty in the calibration of high-energy radiation sources is dependent on user and equipment type. AIM: We evaluated the uncertainty in the positioning of a cylindrical chamber at a reference depth for reference dosimetry of high-energy photon beams and the resulting uncertainty in the chamber readings for 6- and 10-MV photon beams. The aim was to investigate major contributions to the positioning uncertainty to reduce the uncertainty in calibration for external photon beam radiotherapy. MATERIALS AND METHODS: The following phantoms were used: DoseView 1D, WP1D, 1D SCANNER, and QWP-07 as one-dimensional (1D) phantoms for a vertical-beam geometry; GRI-7632 as a phantom for a fixed waterproofing sleeve; and PTW type 41023 and QWP-04 as 1D phantoms for a horizontal-beam geometry. The uncertainties were analyzed as per the Guide to the Expression of Uncertainty in Measurement. RESULTS: The positioning and resultant uncertainties in chamber readings ranged from 0.22 to 0.35 mm and 0.12-0.25%, respectively, among the phantoms (using a coverage factor k = 1 in both cases). The major contributions to positioning uncertainty are: definition of the origin for phantoms among users for the 1D phantoms for a vertical-beam geometry, water level adjustment among users for the phantom for a fixed waterproofing sleeve, phantom window deformation, and non-water material of the window for the 1D phantoms for a horizontal-beam geometry. CONCLUSION: The positioning and resultant uncertainties in chamber readings exhibited minor differences among the seven phantoms. The major components of these uncertainties differed among the phantom types investigated.

18.
Phys Med ; 44: 205-211, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29102154

ABSTRACT

Pretreatment intensity-modulated radiotherapy quality assurance is performed using simple rectangular or cylindrical phantoms; thus, the dosimetric errors caused by complex patient-specific anatomy are absent in the evaluation objects. In this study, we construct a system for generating patient-specific three-dimensional (3D)-printed phantoms for radiotherapy dosimetry. An anthropomorphic head phantom containing the bone and hollow of the paranasal sinus is scanned by computed tomography (CT). Based on surface rendering data, a patient-specific phantom is formed using a fused-deposition-modeling-based 3D printer, with a polylactic acid filament as the printing material. Radiophotoluminescence glass dosimeters can be inserted in the 3D-printed phantom. The phantom shape, CT value, and absorbed doses are compared between the actual and 3D-printed phantoms. The shape difference between the actual and printed phantoms is less than 1 mm except in the bottom surface region. The average CT value of the infill region in the 3D-printed phantom is -6 ±â€¯18 Hounsfield units (HU) and that of the vertical shell region is 126 ±â€¯18 HU. When the same plans were irradiated, the dose differences were generally less than 2%. These results demonstrate the feasibility of the 3D-printed phantom for artificial in vivo dosimetry in radiotherapy quality assurance.


Subject(s)
Phantoms, Imaging , Printing, Three-Dimensional , Quality Assurance, Health Care , Radiation Dosimeters , Radiotherapy , Head/diagnostic imaging , Head/radiation effects , Humans , Polyesters , Tomography, X-Ray Computed
19.
J Appl Clin Med Phys ; 18(5): 271-278, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28771919

ABSTRACT

The American Association of Physicists in Medicine (AAPM) Working Group on TG-51 published an Addendum to the AAPM's TG-51 protocol (Addendum to TG-51) in 2014, and the Japan Society of Medical Physics (JSMP) published a new dosimetry protocol JSMP 12 in 2012. In this study, we compared the absorbed dose to water determined at the reference depth for high-energy photon beams following the recommendations given in AAPM TG-51 and the Addendum to TG-51, IAEA TRS-398, and JSMP 12. This study was performed using measurements with flattened photon beams with nominal energies of 6 and 10 MV. Three widely used ionization chambers with different compositions, Exradin A12, PTW 30013, and IBA FC65-P, were employed. Fully corrected charge readings obtained for the three chambers according to AAPM TG-51 and the Addendum to TG-51, which included the correction for the radiation beam profile (Prp ), showed variations of 0.2% and 0.3% at 6 and 10 MV, respectively, from the readings corresponding to IAEA TRS-398 and JSMP 12. The values for the beam quality conversion factor kQ obtained according to the three protocols agreed within 0.5%; the only exception was a 0.6% difference between the results obtained at 10 MV for Exradin A12 according to IAEA TRS-398 and AAPM TG-51 and the Addendum to TG-51. Consequently, the values for the absorbed dose to water obtained for the three protocols agreed within 0.4%; the only exception was a 0.6% difference between the values obtained at 10 MV for PTW 30013 according to AAPM TG-51 and the Addendum to TG-51, and JSMP 12. While the difference in the absorbed dose to water determined by the three protocols depends on the kQ and Prp values, the absorbed dose to water obtained according to the three protocols agrees within the relative uncertainties for the three protocols.


Subject(s)
Photons , Water , Calibration , Clinical Protocols , Guidelines as Topic , Japan , Radiometry , Radiotherapy, High-Energy , Reference Values , Societies, Scientific/standards , United States
20.
J Appl Clin Med Phys ; 18(5): 124-133, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28691256

ABSTRACT

Stereotactic body radiation therapy (SBRT) using recently introduced multileaf collimators (MLC) is preferred over circular collimators in the treatment of localized prostate cancer. The objective of this study was to assess the clinical usefulness of MLCs in prostate SBRT by comparing the effectiveness of treatment plans using fixed collimators, variable collimators, and MLCs and by ensuring delivery quality assurance (DQA) for each. For each patient who underwent conventional radiation therapy for localized prostate cancer, mock SBRT plans were created using a fixed collimator, a variable collimator, and an MLC. The total MUs, treatment times, and dose-volume histograms of the planning target volumes and organs at risk for each treatment plan were compared. For DQA, a phantom with a radiochromic film or an ionization chamber was irradiated in each plan. We performed gamma-index analysis to evaluate the consistency between the measured and calculated doses. The MLC-based plans had an ~27% lower average total MU than the plans involving other collimators. Moreover, the average estimated treatment time for the MLC plan was 31% and 20% shorter than that for the fixed and variable collimator plans respectively. The gamma-index passing rate in the DQA using film measurements was slightly lower for the MLC than for the other collimators. The DQA results acquired using the ionization chamber showed that the discrepancies between the measured and calculated doses were within 3% in all cases. The results reinforce the usefulness of MLCs in robotic radiosurgery for prostrate SBRT treatment planning; most notably, the total MU and treatment time were both reduced compared to the cases using other types of collimators. Moreover, although the DQA results based on film dosimetry yielded a slightly lower gamma-index passing rate for the MLC than for the other collimators, the MLC accuracy was determined to be sufficient for clinical use.


Subject(s)
Particle Accelerators , Prostatic Neoplasms/radiotherapy , Radiosurgery/instrumentation , Robotic Surgical Procedures/instrumentation , Aged , Humans , Male , Middle Aged , Prostatic Neoplasms/pathology , Radiosurgery/methods , Radiotherapy Dosage , Robotic Surgical Procedures/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...