Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomol Struct Dyn ; 42(5): 2570-2585, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37116195

ABSTRACT

Malaria is among the top-ranked parasitic diseases that pose a threat to the existence of the human race. This study evaluated the antimalarial effect of the rhizome of Zingiber officinale in infected mice, performed secondary metabolite profiling and detailed computational antimalarial evaluation through molecular docking, molecular dynamics (MD) simulation and density functional theory methods. The antimalarial potential of Z. officinale was performed using the in vivo chemosuppressive model; secondary metabolite profiling was carried out using liquid chromatography-mass spectrometry (LC-MS). Molecular docking was performed with Autodock Vina while the MD simulation was performed with Schrodinger desmond suite for 100 ns and DFT calculations with B3LYP (6-31G) basis set. The extract showed 64% parasitaemia suppression, with a dose-dependent increase in activity up to 200 mg/kg. The chemical profiling of the extract tentatively identified eight phytochemicals. The molecular docking studies with plasmepsin II and Plasmodium falciparum dihydrofolate reductase-thymidylate synthase (PfDHFR-TS) identified gingerenone A as the hit molecule, and MMGBSA values corroborate the binding energies obtained. The electronic parameters of gingerenone A revealed its significant antimalarial potential. The antimalarial activity elicited by the extract of Z. officinale and the bioactive chemical constituent supports its usage in ethnomedicine.Communicated by Ramaswamy H. Sarma.


Subject(s)
Antimalarials , Diarylheptanoids , Folic Acid Antagonists , Zingiber officinale , Humans , Animals , Mice , Antimalarials/chemistry , Molecular Docking Simulation , Liquid Chromatography-Mass Spectrometry , Chromatography, Liquid , Tandem Mass Spectrometry , Folic Acid Antagonists/pharmacology , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plasmodium falciparum
2.
Environ Monit Assess ; 193(1): 46, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33415474

ABSTRACT

The activities of the artisanals and small-scale miners in Nasarawa state, Nigeria, are increasing daily without considering the loss of biodiversity, which has continuously disrupted ecological functions and environmental balance. The study aimed at investigating the effect of tantalite mining activities on flora diversity. Three study sites were selected for floristic data collection, comprising tantalite mining site A situated in Azara, Awe LGA; tantalite mining site B situated in Tunga, Awe LGA; and referred site C situated along the Makurdi-Obi Road, Lafia LGA. Eight plots of 20 × 20 m were systematically placed along two transect lines of 1000 m with 500 m distance apart. The total numbers of 32 plant species, at the ratio of 11:20:21 individual species, were found in sites A, B, and referred site C, respectively. Tantalite mining site A showed 46% rare herbs dominating the site, with an introduction of new non-native species of Jateorhiza spp. and Hyptis suaveolens, presenting a significantly high number of individuals (p ˂ 0.0069). Tantalite site B, Tunga, had 50% reductions of several indigenous tree species such as Daniellia oliveri and Vitex doniana, while site A had 75% reduction of tree species. Therefore, the floristic diversity in site A endured a higher degradation than in site B. The indigenous species in site A were almost completely replaced with problematic weeds, invasive weed species, and non-native plant species. The tree diversities in sites A and B were seriously threatened, and H. suaveolens has been regarded as a potentially invasive plant species in Nasarawa state, Nigeria.


Subject(s)
Environmental Monitoring , Mining , Biodiversity , Humans , Nigeria , Oxides , Tantalum
SELECTION OF CITATIONS
SEARCH DETAIL
...