Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
Fluids Barriers CNS ; 19(1): 6, 2022 Jan 15.
Article in English | MEDLINE | ID: mdl-35033138

ABSTRACT

BACKGROUND: Ways to prevent disease-induced vascular modifications that accelerate brain damage remain largely elusive. Improved understanding of perivascular cell signalling could provide unparalleled insight as these cells impact vascular stability and functionality of the neurovascular unit as a whole. Identifying key drivers of astrocyte and pericyte responses that modify cell-cell interactions and crosstalk during injury is key. At the cellular level, injury-induced outcomes are closely entwined with activation of the hypoxia-inducible factor-1 (HIF-1) pathway. Studies clearly suggest that endothelial HIF-1 signalling increases blood-brain barrier permeability but the influence of perivascular HIF-1 induction on outcome is unknown. Using novel mouse lines with astrocyte and pericyte targeted HIF-1 loss of function, we herein show that vascular stability in vivo is differentially impacted by perivascular hypoxia-induced HIF-1 stabilization. METHODS: To facilitate HIF-1 deletion in adult mice without developmental complications, novel Cre-inducible astrocyte-targeted (GFAP-CreERT2; HIF-1αfl/fl and GLAST-CreERT2; HIF-1αfl/fl) and pericyte-targeted (SMMHC-CreERT2; HIF-1αfl/fl) transgenic animals were generated. Mice in their home cages were exposed to either normoxia (21% O2) or hypoxia (8% O2) for 96 h in an oxygen-controlled humidified glove box. All lines were similarly responsive to hypoxic challenge and post-Cre activation showed significantly reduced HIF-1 target gene levels in the individual cells as predicted. RESULTS: Unexpectedly, hypoxia-induced vascular remodelling was unaffected by HIF-1 loss of function in the two astrocyte lines but effectively blocked in the pericyte line. In correlation, hypoxia-induced barrier permeability and water accumulation were abrogated only in pericyte targeted HIF-1 loss of function mice. In contrast to expectation, brain and serum levels of hypoxia-induced VEGF, TGF-ß and MMPs (genes known to mediate vascular remodelling) were unaffected by HIF-1 deletion in all lines. However, in agreement with the permeability data, immunofluorescence and electron microscopy showed clear prevention of hypoxia-induced tight junction disruption in the pericyte loss of function line. CONCLUSION: This study shows that pericyte but not astrocyte HIF-1 stabilization modulates endothelial tight junction functionality and thereby plays a pivotal role in hypoxia-induced vascular dysfunction. Whether the cells respond similarly or differentially to other injury stimuli will be of significant relevance.


Subject(s)
Astrocytes/metabolism , Capillary Permeability/physiology , Cerebral Cortex/metabolism , Endothelium, Vascular/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia/metabolism , Pericytes/metabolism , Animals , Mice , Mice, Transgenic
2.
Angiogenesis ; 24(4): 823-842, 2021 11.
Article in English | MEDLINE | ID: mdl-34046769

ABSTRACT

Pericytes play essential roles in blood-brain barrier integrity and their dysfunction is implicated in neurological disorders such as stroke although the underlying mechanisms remain unknown. Hypoxia-inducible factor-1 (HIF-1), a master regulator of injury responses, has divergent roles in different cells especially during stress scenarios. On one hand HIF-1 is neuroprotective but on the other it induces vascular permeability. Since pericytes are critical for barrier stability, we asked if pericyte HIF-1 signaling impacts barrier integrity and injury severity in a mouse model of ischemic stroke. We show that pericyte HIF-1 loss of function (LoF) diminishes ischemic damage and barrier permeability at 3 days reperfusion. HIF-1 deficiency preserved barrier integrity by reducing pericyte death thereby maintaining vessel coverage and junctional protein organization, and suppressing vascular remodeling. Importantly, considerable improvements in sensorimotor function were observed in HIF-1 LoF mice indicating that better vascular functionality post stroke improves outcome. Thus, boosting vascular integrity by inhibiting pericytic HIF-1 activation and/or increasing pericyte survival may be a lucrative option to accelerate recovery after severe brain injury.


Subject(s)
Brain Ischemia , Ischemic Stroke , Stroke , Animals , Blood-Brain Barrier , Hypoxia , Hypoxia-Inducible Factor 1 , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Mice , Pericytes
3.
Cells ; 10(4)2021 04 20.
Article in English | MEDLINE | ID: mdl-33924251

ABSTRACT

Pericytes facilitate blood-brain barrier (BBB) integrity; however, the mechanisms involved remain unclear. Hence, using co-cultures of human cerebral microvascular endothelial cells (ECs) and vascular pericytes (PCs) in different spatial arrangements, as well as PC conditioned media, we investigated the impact of PC-EC orientation and PC-derived soluble factors on EC barrier function. We provide the first evidence that barrier-inducing properties of PCs require basolateral contact with ECs. Gene expression analysis (GEA) in ECs co-cultured with PCs versus ECs alone showed significant upregulation of 38 genes and downregulation of 122 genes. Pathway enrichment analysis of modulated genes showed significant regulation of several pathways, including transforming growth factor-ß and interleukin-1 regulated extracellular matrix, interferon and interleukin signaling, immune system signaling, receptor of advanced glycation end products (RAGE), and cytokine-cytokine receptor interaction. Transcriptomic analysis showed a reduction in molecules such as pro-inflammatory cytokines and chemokines, which are known to be induced during BBB disruption. Moreover, cytokine proteome array confirmed the downregulation of key pro-inflammatory cytokines and chemokines on the protein level. Other molecules which influence BBB and were favorably modulated upon EC-PC co-culture include IL-18 binding protein, kallikrein-3, CSF2 CSF3, CXCL10, CXCL11 (downregulated) and IL-1-R4; HGF, PDGF-AB/BB, PECAM, SERPIN E1 (upregulated). In conclusion, we provide the first evidence that (1) basolateral contact between ECs and PCs is essential for EC barrier function and integrity; (2) in ECs co-cultured with PCs, the profile of BBB disrupting pro-inflammatory molecules and cytokines/chemokines is downregulated; (3) PCs significantly modulate EC mechanisms known to improve barrier function, including TGF-ß regulated ECM pathway, anti-inflammatory cytokines, growth factors and matrix proteins. This human PC-EC co-culture may serve as a viable in vitro model for investigating BBB function and drug transport.


Subject(s)
Brain/blood supply , Endothelial Cells/cytology , Endothelial Cells/metabolism , Gene Expression Profiling , Microvessels/cytology , Pericytes/cytology , Coculture Techniques , Culture Media, Conditioned/pharmacology , Cytokines/metabolism , Endothelial Cells/drug effects , Gene Expression Regulation/drug effects , Humans , Pericytes/drug effects , Pericytes/metabolism
4.
Fluids Barriers CNS ; 18(1): 13, 2021 Mar 18.
Article in English | MEDLINE | ID: mdl-33736658

ABSTRACT

BACKGROUND: Astrocytes (AC) are essential for brain homeostasis. Much data suggests that AC support and protect the vascular endothelium, but increasing evidence indicates that during injury conditions they may lose their supportive role resulting in endothelial cell activation and BBB disturbance. Understanding the triggers that flip this switch would provide invaluable information for designing new targets to modulate the brain vascular compartment. Hypoxia-inducible factor-1 (HIF-1) has long been assumed to be a culprit for barrier dysfunction as a number of its target genes are potent angiogenic factors. Indeed AC themselves, reservoirs of an array of different growth factors and molecules, are frequently assumed to be the source of such molecules although direct supporting evidence is yet to be published. Being well known reservoirs of HIF-1 dependent angiogenic molecules, we asked if AC HIF-1 dependent paracrine signaling drives brain EC disturbance during hypoxia. METHODS: First we collected conditioned media from control and siRNA-mediated HIF-1 knockdown primary rat AC that had been exposed to normoxic or hypoxic conditions. The conditioned media was then used to culture normoxic and hypoxic (1% O2) rat brain microvascular EC (RBE4) for 6 and 24 h. Various activation parameters including migration, proliferation and cell cycling were assessed and compared to untreated controls. In addition, tight junction localization and barrier stability per se (via permeability assay) was evaluated. RESULTS: AC conditioned media maintained both normoxic and hypoxic EC in a quiescent state by suppressing EC metabolic activity and proliferation. By FACs we observed reduced cell cycling with an increased number of cells in G0 phase and reduced cell numbers in M phase compared to controls. EC migration was also blocked by AC conditioned media and in correlation hypoxic tight junction organization and barrier functionality was improved. Surprisingly however, AC HIF-1 deletion did not impact EC responses or barrier stability during hypoxia. CONCLUSIONS: This study demonstrates that AC HIF-1 dependent paracrine signaling does not contribute to AC modulation of EC barrier function under normoxic or hypoxic conditions. Thus other cell types likely mediate EC permeability in stress scenarios. Our data does however highlight the continuous protective effect of AC on the barrier endothelium. Exploring these protective mechanisms in more detail will provide essential insight into ways to prevent barrier disturbance during injury and disease.


Subject(s)
Astrocytes/metabolism , Endothelial Cells/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Hypoxia/metabolism , Animals , Animals, Newborn , Cells, Cultured , RNA, Small Interfering , Rats , Transfection
6.
Acta Neuropathol ; 140(2): 183-208, 2020 08.
Article in English | MEDLINE | ID: mdl-32529267

ABSTRACT

Bacterial meningitis is a deadly disease most commonly caused by Streptococcus pneumoniae, leading to severe neurological sequelae including cerebral edema, seizures, stroke, and mortality when untreated. Meningitis is initiated by the transfer of S. pneumoniae from blood to the brain across the blood-cerebrospinal fluid barrier or the blood-brain barrier (BBB). The underlying mechanisms are still poorly understood. Current treatment strategies include adjuvant dexamethasone for inflammation and cerebral edema, followed by antibiotics. The success of dexamethasone is however inconclusive, necessitating new therapies for controlling edema, the primary reason for neurological complications. Since we have previously shown a general activation of hypoxia inducible factor (HIF-1α) in bacterial infections, we hypothesized that HIF-1α, via induction of vascular endothelial growth factor (VEGF) is involved in transmigration of pathogens across the BBB. In human, murine meningitis brain samples, HIF-1α activation was observed by immunohistochemistry. S. pneumoniae infection in brain endothelial cells (EC) resulted in in vitro upregulation of HIF-1α/VEGF (Western blotting/qRT-PCR) associated with increased paracellular permeability (fluorometry, impedance measurements). This was supported by bacterial localization at cell-cell junctions in vitro and in vivo in brain ECs from mouse and humans (confocal, super-resolution, electron microscopy, live-cell imaging). Hematogenously infected mice showed increased permeability, S. pneumoniae deposition in the brain, along with upregulation of genes in the HIF-1α/VEGF pathway (RNA sequencing of brain microvessels). Inhibition of HIF-1α with echinomycin, siRNA in bEnd5 cells or using primary brain ECs from HIF-1α knock-out mice revealed reduced endothelial permeability and transmigration of S. pneumoniae. Therapeutic rescue using the HIF-1α inhibitor echinomycin resulted in increased survival and improvement of BBB function in S. pneumoniae-infected mice. We thus demonstrate paracellular migration of bacteria across BBB and a critical role for HIF-1α/VEGF therein and hence propose targeting this pathway to prevent BBB dysfunction and ensuing brain damage in infections.


Subject(s)
Blood-Brain Barrier , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Meningitis, Pneumococcal , Streptococcus pneumoniae , Transendothelial and Transepithelial Migration/physiology , Adult , Aged , Aged, 80 and over , Animals , Blood-Brain Barrier/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Vascular Endothelial Growth Factor A/metabolism
7.
Redox Biol ; 34: 101576, 2020 07.
Article in English | MEDLINE | ID: mdl-32502899

ABSTRACT

Blood-brain barrier (BBB) impairment clearly accelerates brain disease progression. As ways to prevent injury-induced barrier dysfunction remain elusive, better understanding of how BBB cells interact and modulate barrier integrity is needed. Our metabolomic profiling study showed that cell-specific adaptation to injury correlates well with metabolic reprogramming at the BBB. In particular we noted that primary astrocytes (AC) contain comparatively high levels of glutathione (GSH)-related metabolites compared to primary endothelial cells (EC). Injury significantly disturbed redox balance in EC but not AC motivating us to assess 1) whether an AC-EC GSH shuttle supports barrier stability and 2) the impact of GSH on EC function. Using an isotopic labeling/tracking approach combined with Time-of-Flight Mass Spectrometry (TOF-MS) we prove that AC constantly shuttle GSH to EC even under resting conditions - a flux accelerated by injury conditions in vitro. In correlation, co-culture studies revealed that blocking AC GSH generation and secretion via siRNA-mediated γ-glutamyl cysteine ligase (GCL) knockdown significantly compromises EC barrier integrity. Using different GSH donors, we further show that exogenous GSH supplementation improves barrier function by maintaining organization of tight junction proteins and preventing injury-induced tight junction phosphorylation. Thus the AC GSH shuttle is key for maintaining EC redox homeostasis and BBB stability suggesting GSH supplementation could improve recovery after brain injury.


Subject(s)
Astrocytes , Glutathione , Blood-Brain Barrier , Endothelial Cells , Tight Junctions
8.
Sci Rep ; 10(1): 7760, 2020 05 08.
Article in English | MEDLINE | ID: mdl-32385409

ABSTRACT

On one hand blood-brain barrier (BBB) disturbance aggravates disease progression, on the other it prevents drug access and impedes therapeutic efficacy. Effective ways to modulate barrier function and resolve these issues are sorely needed. Convinced that better understanding of cell-oriented BBB responses could provide valuable insight, and the fact that metabolic dysregulation is prominent in many vascular-related pathological processes associated with BBB disturbance, we hypothesized that differential cell-specific metabolic adaptation majorly influences physiological and pathological barrier functionality. Untargeted liquid chromatography-mass spectrometry (LC-MS) metabolomic profiling was used to obtain individual biochemical fingerprints of primary astrocytes (AC) and brain endothelial cells (EC) during normoxic conditions and increasing hypoxic/ischemic injury and thus a functional readout of cell status. Bioinformatic analyses showed each cell had a distinct metabolic signature. Corroborating their roles in BBB and CNS protection, AC showed an innate ability to dynamically alter their metabolome depending on the insult. Surprisingly, in complete contrast, EC largely maintained their normoxic characteristics in injury situations and their profiles diverged from those of non-brain origin. Tissue specificity/origin is clearly important when considering EC responses. Focusing on energy capacity and utilization we discuss how cell-specific metabolic adaptive capabilities could influence vascular stability and the possibility that altering metabolite levels may be an effective way to modulate brain EC function. Overall this work novel insight into cell-associated metabolic changes, and provides a powerful resource for understanding BBB changes during different injury scenarios.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Injuries/metabolism , Metabolome , Metabolomics , Adaptation, Physiological , Amino Acids/metabolism , Animals , Astrocytes/metabolism , Brain/blood supply , Brain/metabolism , Brain Injuries/etiology , Chromatography, Liquid , Computational Biology/methods , Endothelial Cells/metabolism , Glucose/metabolism , Glycolysis , Humans , Mass Spectrometry , Metabolic Networks and Pathways , Organ Specificity , Oxygen Consumption , Rats , Stress, Physiological
9.
Exp Cell Res ; 383(2): 111503, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31336100

ABSTRACT

Hypoxic blood-brain barrier (BBB) dysfunction is a common feature of CNS diseases however mechanisms underlying barrier disturbance are still largely unknown. This study investigated the role of transforming growth factor ß (TGFß), a cytokine known to induce expression of the proprotein convertase Furin, in hypoxia-mediated barrier compromise. We show that exposure of brain endothelial cells (ECs) to hypoxia (1% O2) rapidly stimulates their migration. Additional exogenous TGFß (0.4 nM) exposure potentiated this effect and increased Furin expression in a TGFß type I receptor activin-like kinase 5 (ALK5) - dependent manner (prevented by 10 µM SB431542). Furin inhibition prevented hypoxia-induced EC migration and blocked TGFß-induced potentiation suggesting existence of a feedback loop. TGFß and Furin were also critical for hypoxia-induced BBB dysfunction. TGFß treatment aggravated hypoxia-induced BBB permeability but ALK5 or Furin blockade reversed injury-induced permeability changes. Thus during insult Furin compromises endothelial integrity by mediating the effects of TGFß. Targeting the Furin or ALK5 pathway may offer novel therapeutic strategies for improving BBB stability and CNS function during disease.


Subject(s)
Blood-Brain Barrier/drug effects , Cell Membrane Permeability/drug effects , Enzyme Inhibitors/pharmacology , Furin/antagonists & inhibitors , Hypoxia/metabolism , Receptor, Transforming Growth Factor-beta Type I/physiology , Transforming Growth Factor beta/pharmacology , Amino Acid Chloromethyl Ketones/pharmacology , Animals , Benzamides/pharmacology , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Capillary Permeability/drug effects , Cell Movement/drug effects , Cell Movement/genetics , Cells, Cultured , Dioxoles/pharmacology , Endothelial Cells/drug effects , Endothelial Cells/pathology , Endothelial Cells/physiology , Fluoresceins/pharmacology , Furin/genetics , Furin/metabolism , Hypoxia/complications , Hypoxia/pathology , Male , Rats , Rats, Wistar , Receptor, Transforming Growth Factor-beta Type I/antagonists & inhibitors , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type I/metabolism , Signal Transduction/drug effects , Signal Transduction/physiology , Transforming Growth Factor beta/physiology
10.
Respir Physiol Neurobiol ; 267: 12-19, 2019 09.
Article in English | MEDLINE | ID: mdl-31154093

ABSTRACT

Erythropoietin (EPO) is a hypoxia-inducible hormone, classically known to enhance red blood cell production upon binding its receptor (EPOR) present on the surface of the erythroid progenitor cells. EPO and its receptor are also expressed in the central nervous system (CNS), exerting several non-hematopoietic actions. EPO also plays an important role in the control of breathing. In this review, we summarize the known physiological actions of EPO in the neural control of ventilation during postnatal development and at adulthood in rodents under normoxic and hypoxic conditions. Furthermore, we present the developmental expression patterns of EPO and EPORs in the brainstem, and with the use of in situ hybridization (ISH) and immunofluorescence techniques we provide original data showing that EPOR is abundantly present in specific brainstem nuclei associated with central chemosensitivity and control of ventilation in the ventrolateral medulla, mainly on somatostatin negative cells. Thus, we conclude that EPO signaling may act through glutamatergic neuron populations that are the primary source of rhythmic inspiratory excitatory drive. This work underlies the importance of EPO signaling in the central control of ventilation across development and adulthood and provides new insights on the expression of EPOR at the cellular level.


Subject(s)
Brain Stem/growth & development , Brain Stem/metabolism , Erythropoietin/biosynthesis , Gene Expression Regulation, Developmental , Receptors, Erythropoietin/biosynthesis , Respiratory Mechanics/physiology , Animals , Animals, Newborn , Erythropoietin/genetics , Humans , Mice , Pulmonary Ventilation/physiology , Receptors, Erythropoietin/genetics
11.
Surgery ; 162(1): 68-81, 2017 07.
Article in English | MEDLINE | ID: mdl-28413066

ABSTRACT

BACKGROUND: Temporary portal vein embolization may be a safe alternative to permanent portal vein embolization. Such a new approach could be applied in living-related liver transplantation to increase graft volume before procurement. The impact of temporary portal vein embolization on occluded liver after recanalization, however, has never been assessed. Using a mouse model of temporary portal vein embolization, we investigated (1) the efficiency of temporary portal vein embolization in inducing nonoccluded liver hypertrophy and (2) the regeneration potential and functional recovery of embolized liver after recanalization. METHODS: Selected portal vein branches were occluded using gelfoam powder (temporary portal vein embolization) or embospheres (permanent portal vein embolization), n = 5/group. Magnetic resonance volumetry and angiography were used to determine volumes of the liver lobe and portal vein branch recanalization. In order to assess the functional and regenerative capacity of occluded liver lobes, nonoccluded lobes were resected 14 days (timespan of complete portal vein recanalization) after temporary portal vein embolization or permanent portal vein embolization. Subsequently, RNA sequencing was performed to compare the signaling pathways of early liver regeneration among the groups. RESULTS: Hypertrophy of nonoccluded lobes 30 days after temporary portal vein embolization and permanent portal vein embolization was similar (103 ± 26% and 129 ± 13%, P = .11). Temporary occluded lobes increased their volumes after nonoccluded lobes resection, reaching similar liver-to-body-weight ratios and similar functional capacity after 7 days compared with partial hepatectomy controls (4 ± 1% vs 4 ± 1%, P = .22). Partial hepatectomy activated similar signaling pathways in temporary occluded and native liver. CONCLUSION: Temporary portal vein embolization induces hypertrophy of contralateral liver lobes similarly to permanent portal vein embolization in mice. This experimental work suggests that temporary portal vein embolization may be considered as a possibility in living liver donation, because regenerative and functional capacities are preserved in the embolized liver after recanalization in mice.


Subject(s)
Embolization, Therapeutic/methods , Liver/pathology , Portal Vein , Animals , Disease Models, Animal , Gelatin Sponge, Absorbable , Hypertrophy , Liver/surgery , Liver Regeneration , Male , Mice , Mice, Inbred C57BL , Organ Size , Time Factors
12.
Sci Rep ; 6: 27738, 2016 06 14.
Article in English | MEDLINE | ID: mdl-27296892

ABSTRACT

By maintaining the Na(+) and K(+) transmembrane gradient mammalian Na,K-ATPase acts as a key regulator of neuronal electrotonic properties. Na,K-ATPase has an important role in synaptic transmission and memory formation. Accumulation of beta-amyloid (Aß) at the early stages of Alzheimer's disease is accompanied by reduction of Na,K-ATPase functional activity. The molecular mechanism behind this phenomenon is not known. Here we show that the monomeric Aß(1-42) forms a tight (Kd of 3 µM), enthalpy-driven equimolar complex with α1ß1 Na,K-ATPase. The complex formation results in dose-dependent inhibition of the enzyme hydrolytic activity. The binding site of Aß(1-42) is localized in the "gap" between the alpha- and beta-subunits of Na,K-ATPase, disrupting the enzyme functionality by preventing the subunits from shifting towards each other. Interaction of Na,K-ATPase with exogenous Aß(1-42) leads to a pronounced decrease of the enzyme transport and hydrolytic activity and Src-kinase activation in neuroblastoma cells SH-SY5Y. This interaction allows regulation of Na,K-ATPase activity by short-term increase of the Aß(1-42) level. However prolonged increase of Aß(1-42) level under pathological conditions could lead to chronical inhibition of Na,K-ATPase and disruption of neuronal function. Taken together, our data suggest the role of beta-amyloid as a novel physiological regulator of Na,K-ATPase.


Subject(s)
Amyloid beta-Peptides/metabolism , Peptide Fragments/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism , Cell Line, Tumor , Cell Survival , Enzyme Activation , Fluorescein/metabolism , Humans , Hydrolysis , Models, Molecular , Neuroblastoma/metabolism , Neuroblastoma/pathology , Protein Binding , Protein Transport , Sodium-Potassium-Exchanging ATPase/chemistry , Solutions , src-Family Kinases/metabolism
13.
Brain Res ; 1642: 298-307, 2016 07 01.
Article in English | MEDLINE | ID: mdl-27018294

ABSTRACT

Neurodegenerative diseases are frequently associated with hypoxic conditions. During hypoxia the neuronal cytoskeleton is rapidly reorganized and such abnormalities are directly linked to adverse outcomes. Besides their roles as master regulators of the cytoskeleton, the Rho GTPases are also involved in cellular processes stimulated by hypoxic stress. We investigated the contribution of Rac1-mediated signaling to hypoxic responses of mature neurons using primary cortical cells cultured for 17 days in vitro. We show Rac1 is both upregulated and activated during hypoxia. Pharmacological inhibition of Rac1, but not RhoA, completely abrogated hypoxic HIF-1α stabilization and expression of the HIF-1 targets VEGF and GLUT1. Furthermore activity of JNK and GSK3ß were also highly dependent on Rac1 activity and biphasic effects were observed after 6 and 24h of exposure. Notably, inhibition of either pathway suppressed HIF-1α accumulation. Although inhibition of Rac1 did not affect neuronal viability during acute exposure cell death was strongly induced after 24h revealing a time-dependent effect of Rac1 signaling on survival. Thus hypoxia-activated Rac1 is critical for neuronal HIF-1α stabilization and survival during oxygen deprivation via integration of complex signaling cascades.


Subject(s)
Cerebral Cortex/metabolism , Hypoxia, Brain/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Neurons/metabolism , Neuropeptides/metabolism , rac1 GTP-Binding Protein/metabolism , Animals , Cell Hypoxia , Cells, Cultured , MAP Kinase Signaling System , Mice , Mice, Inbred C57BL , Phosphatidylinositol 3-Kinase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Up-Regulation
14.
Neuropharmacology ; 110(Pt A): 211-222, 2016 11.
Article in English | MEDLINE | ID: mdl-27016021

ABSTRACT

1-Deoxysphingolipids (1-deoxySL) are atypical and neurotoxic sphingolipids formed by alternate substrate usage of the enzyme serine-palmitoyltransferase. Pathologically increased 1-deoxySL formation causes hereditary sensory and autosomal neuropathy type 1 (HSAN1) - a progressive peripheral axonopathy. However, the underlying molecular mechanisms by which 1-deoxySL acts are unknown. Herein we studied the effect of 1-deoxysphinganine (1-deoxySA) and its canonical counterpart sphinganine (SA) in aged cultured neurons comparing their outcome on cell survival and cytoskeleton integrity. 1-deoxySA caused rapid neuronal cytoskeleton disruption and modulated important cytoskeletal regulatory and associated components including Rac1, Ezrin and insulin receptor substrate 53. We show that 1-deoxySA is internalized and metabolized downstream to 1-deoxydihydroceramide since inhibition of ceramide synthase protected neurons from 1-deoxySA-mediated cell death. In addition, 1-deoxySA reduced protein levels of N-methyl-d-aspartate receptor (NMDAR) subunit GluN2B, the postsynaptic density protein 95 and induced cleavage of p35 to p25. Notably, blocking NMDAR activation by MK-801 or memantine significantly prevented 1-deoxySA neurotoxicity. Functional studies of differentiating primary neurons via the patch-clamp technique demonstrated that 1-deoxySA irreversibly depolarizes the neuronal membrane potential in an age-dependent manner. Notably, only neuronal cells that displayed functional NMDAR- and NMDA-induced whole-cell currents responded to 1-deoxySA treatment. Furthermore, pre-exposure to the non-competitive antagonist MK-801 blocked the current response of NMDA and glycine, as well as 1-deoxySA. We conclude that 1-deoxySA-induced neurotoxicity compromises cytoskeletal stability and targets NMDAR signaling in an age-dependent manner. Thus stabilization of cytoskeletal structures and/or inhibition of glutamate receptors could be a potential therapeutic approach to prevent 1-deoxySA-induced neurodegeneration.


Subject(s)
Neurons/drug effects , Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Sphingolipids/toxicity , Animals , Cell Line, Tumor , Cerebral Cortex , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Disks Large Homolog 4 Protein/metabolism , Dizocilpine Maleate/pharmacology , Dose-Response Relationship, Drug , Excitatory Amino Acid Antagonists/pharmacology , Glycine/administration & dosage , Glycine/metabolism , Humans , Memantine/pharmacology , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice, Inbred C57BL , N-Methylaspartate/administration & dosage , N-Methylaspartate/metabolism , Neurons/pathology , Neuroprotective Agents/pharmacology , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Signal Transduction/drug effects , Sphingosine/analogs & derivatives , Sphingosine/toxicity , rac1 GTP-Binding Protein/antagonists & inhibitors , rac1 GTP-Binding Protein/metabolism
15.
Fluids Barriers CNS ; 12: 4, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25879623

ABSTRACT

BACKGROUND: Undisturbed functioning of the blood-brain barrier (BBB) crucially depends on paracellular signaling between its associated cells; particularly endothelial cells, pericytes and astrocytes. Hypoxic and ischemic injuries are closely associated with disturbed BBB function and the contribution of perivascular cells to hypoxic/ischemic barrier regulation has gained increased attention. Regardless, detailed information on the basal hypoxic/ischemic responses of the barrier-associated cells is rare and the outcome of such cell-specific responses on BBB modulation is not well understood. This study investigated crucial parameters of hypoxic/ischemic adaptation in order to characterize individual perivascular cell responses to stress conditions. METHODS: The brain microvascular endothelial cell line RBE4 (EC cell line) as well as primary rat brain endothelial cells (ECs), pericytes (PCs) and astrocytes (ACs) were exposed to 24 and 48 hours of oxygen deprivation at 1% and 0.2% O2. All primary cells were additionally subjected to combined oxygen and glucose deprivation mimicking ischemia. Central parameters of cellular adaptation and state, such as HIF-1α and HIF-1 target gene induction, actin cytoskeletal architecture, proliferation and cell viability, were compared between the cell types. RESULTS: We show that endothelial cells exhibit greater responsiveness and sensitivity to oxygen deprivation than ACs and PCs. This higher sensitivity coincided with rapid and significant stabilization of HIF-1α and its downstream targets (VEGF, GLUT-1, MMP-9 and PHD2), early disruption of the actin cytoskeleton and metabolic impairment in conditions where the perivascular cells remain largely unaffected. Additional adaptation (suppression) of proliferation also likely contributes to astrocytic and pericytic tolerance during severe injury conditions. Moreover, unlike the perivascular cells, ECs were incapable of inducing autophagy (monitored via LC3-II and Beclin-1 expression) - a putative protective mechanism. Notably, both ACs and PCs were significantly more susceptible to glucose than oxygen deprivation with ACs proving to be most resistant overall. CONCLUSION: In summary this work highlights considerable differences in sensitivity to hypoxic/ischemic injury between microvascular endothelial cells and the perivascular cells. This can have marked impact on barrier stability. Such fundamental knowledge provides an important foundation to better understand the complex cellular interactions at the BBB both physiologically and in injury-related contexts in vivo.


Subject(s)
Adaptation, Physiological , Blood-Brain Barrier/physiopathology , Brain Ischemia/physiopathology , Hypoxia, Brain/physiopathology , Actins/metabolism , Animals , Astrocytes/metabolism , Astrocytes/physiology , Autophagy , Blood-Brain Barrier/metabolism , Brain Ischemia/metabolism , Cell Hypoxia , Cell Line , Endothelial Cells/metabolism , Endothelial Cells/physiology , Gene Expression , Hypoxia, Brain/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pericytes/metabolism , Pericytes/physiology , Rats
16.
Brain Behav Immun ; 47: 186-92, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25476601

ABSTRACT

Interactions of neurons with microglia may play a dominant role in sleep regulation. TNF may exert its somnogeneic effects by promoting attraction of microglia and their processes to the vicinity of dendrites and synapses. We found TNF to stimulate neurons (i) to produce CCL2, CCL7 and CXCL10, chemokines acting on mononuclear phagocytes and (ii) to stimulate the expression of the macrophage colony stimulating factor (M-CSF/Csf1), which leads to elongation of microglia processes. TNF may also act on neurons by affecting the expression of genes essential in sleep-wake behavior. The neuronal expression of Homer1a mRNA, increases during spontaneous and enforced periods of wakefulness. Mice with a deletion of Homer1a show a reduced wakefulness with increased non-rapid eye movement (NREM) sleep during the dark period. Recently the TNF-dependent increase of NREM sleep in the dark period of mice with CD40-induced immune activation was found to be associated with decreased expression of Homer1a. In the present study we investigated the effects of TNF and IL-1ß on gene expression in cultures of the neuronal cell line HT22 and cortical neurons. TNF slightly increased the expression of Homer1a and IL-1ß profoundly enhanced the expression of Early growth response 2 (Egr2). The data presented here indicate that the decreased expression of Homer1a, which was found in the dark period of mice with CD40-induced increase of NREM sleep is not due to inhibitory effects of TNF and IL-1ß on the expression of Homer1a in neurons.


Subject(s)
Carrier Proteins/metabolism , Cerebral Cortex/drug effects , Chemokines/metabolism , Interleukin-1beta/pharmacology , Neurons/drug effects , Tumor Necrosis Factor-alpha/pharmacology , Animals , Carrier Proteins/genetics , Cell Line , Cerebral Cortex/metabolism , Chemokines/blood , Early Growth Response Protein 2/genetics , Early Growth Response Protein 2/metabolism , Homer Scaffolding Proteins , Mice , Neurons/metabolism
17.
Diabetes ; 63(4): 1326-39, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24379346

ABSTRACT

Irreversible failure of pancreatic ß-cells is the main culprit in the pathophysiology of diabetes, a disease that is now a global epidemic. Recently, elevated plasma levels of deoxysphingolipids, including 1-deoxysphinganine, have been identified as a novel biomarker for the disease. In this study, we analyzed whether deoxysphingolipids directly compromise the functionality of insulin-producing Ins-1 cells and primary islets. Treatment with 1-deoxysphinganine induced dose-dependent cytotoxicity with senescent, necrotic, and apoptotic characteristics and compromised glucose-stimulated insulin secretion. In addition, 1-deoxysphinganine altered cytoskeleton dynamics, resulting in intracellular accumulation of filamentous actin and activation of the Rho family GTPase Rac1. Moreover, 1-deoxysphinganine selectively upregulated ceramide synthase 5 expression and was converted to 1-deoxy-dihydroceramides without altering normal ceramide levels. Inhibition of intracellular 1-deoxysphinganine trafficking and ceramide synthesis improved the viability of the cells, indicating that the intracellular metabolites of 1-deoxysphinganine contribute to its cytotoxicity. Analyses of signaling pathways identified Jun N-terminal kinase and p38 mitogen-activated protein kinase as antagonistic effectors of cellular senescence. The results revealed that 1-deoxysphinganine is a cytotoxic lipid for insulin-producing cells, suggesting that the increased levels of this sphingolipid observed in diabetic patients may contribute to the reduced functionality of pancreatic ß-cells. Thus, targeting deoxysphingolipid synthesis may complement the currently available therapies for diabetes.


Subject(s)
Insulin-Secreting Cells/drug effects , Sphingosine/analogs & derivatives , Animals , Apoptosis/drug effects , Biomarkers , Blood Glucose/metabolism , Cell Survival/drug effects , Cells, Cultured , Cellular Senescence/drug effects , Cytoskeleton/drug effects , Humans , Islets of Langerhans/drug effects , Islets of Langerhans/metabolism , Lipids , Mice , Rats , Signal Transduction , Sphingosine/metabolism , Sphingosine/pharmacology , Sphingosine/toxicity
18.
J Cell Physiol ; 229(8): 1096-105, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24375098

ABSTRACT

The blood-brain barrier (BBB) constitutes a critical barrier for the maintenance of central nervous system homeostasis. Brain microvascular endothelial cells line the vessel walls and express tight junction (TJ) complexes that restrict paracellular passage across the BBB, thereby fulfilling a crucial role in ensuring brain function. Hypoxia, an impaired O(2) delivery, is known to cause BBB dysfunction but the mechanisms that drive this disruption remain unclear. This study discloses the relevance of the master regulator of the hypoxic response, hypoxia-inducible factor-1 (HIF-1), in hypoxia-induced barrier disruption using the rat brain endothelial cell line RBE4. Hypoxic exposure rapidly induced stabilization of the HIF-1 oxygen-dependent alpha subunit (HIF-1α) concomitantly with BBB impairment and TJ disruption mainly through delocalization and increased tyrosine phosphorylation of TJ proteins. Similar observations were obtained by normoxic stabilization of HIF-1α using CoCl(2), deferoxamine, and dimethyloxalylglycine underlining the involvement of HIF-1 in barrier dysfunction particularly via TJ alterations. In agreement inhibition of HIF-1 stabilization by 2-methoxyestradiol and YC-1 improved barrier function in hypoxic cells. Overall our data suggests that activation of HIF-1-mediated signaling disrupts TJ resulting in increased BBB permeability.


Subject(s)
Endothelial Cells/drug effects , Endothelial Cells/physiology , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Oxygen/metabolism , Tight Junction Proteins/metabolism , Animals , Cell Line , Cell Survival , Gene Expression Regulation/drug effects , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Oxygen/pharmacology , Phosphorylation , Rats , Signal Transduction/drug effects , Tight Junction Proteins/genetics , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism
19.
Methods Mol Biol ; 982: 13-41, 2013.
Article in English | MEDLINE | ID: mdl-23456860

ABSTRACT

The hematopoietic growth factor erythropoietin (Epo) circulates in plasma and controls the oxygen carrying capacity of the blood (Fisher. Exp Biol Med (Maywood) 228:1-14, 2003). Epo is produced primarily in the adult kidney and fetal liver and was originally believed to play a role restricted to stimulation of early erythroid precursor proliferation, inhibition of apoptosis, and differentiation of the erythroid lineage. Early studies showed that mice with targeted deletion of Epo or the Epo receptor (EpoR) show impaired erythropoiesis, lack mature erythrocytes, and die in utero around embryonic day 13.5 (Wu et al. Cell 83:59-67, 1995; Lin et al. Genes Dev. 10:154-164, 1996). These animals also exhibited heart defects, abnormal vascular development as well as increased apoptosis in the brain suggesting additional functions for Epo signaling in normal development of the central nervous system and heart. Now, in addition to its well-known role in erythropoiesis, a diverse array of cells have been identified that produce Epo and/or express the Epo-R including endothelial cells, smooth muscle cells, and cells of the central nervous system (Masuda et al. J Biol Chem. 269:19488-19493, 1994; Marti et al. Eur J Neurosci. 8:666-676, 1996; Bernaudin et al. J Cereb Blood Flow Metab. 19:643-651, 1999; Li et al. Neurochem Res. 32:2132-2141, 2007). Endogenously produced Epo and/or expression of the EpoR gives rise to autocrine and paracrine signaling in different organs particularly during hypoxia, toxicity, and injury conditions. Epo has been shown to regulate a variety of cell functions such as calcium flux (Korbel et al. J Comp Physiol B. 174:121-128, 2004) neurotransmitter synthesis and cell survival (Velly et al. Pharmacol Ther. 128:445-459, 2010; Vogel et al. Blood. 102:2278-2284, 2003). Furthermore Epo has neurotrophic effects (Grimm et al. Nat Med. 8:718-724, 2002; Junk et al. Proc Natl Acad Sci U S A. 99:10659-10664, 2002), can induce an angiogenic phenotype in cultured endothelial cells and is a potent angiogenic factor in vivo (Ribatti et al. Eur J Clin Invest. 33:891-896, 2003) and might enhance ventilation in hypoxic conditions (Soliz et al. J Physiol. 568:559-571, 2005; Soliz et al. J Physiol. 583, 329-336, 2007). Thus multiple functions have been identified breathing new life and exciting possibilities into what is really an old growth factor.This review will address the function of Epo in non-hematopoietic tissues with significant emphasis on the brain and heart.


Subject(s)
Erythropoietin/metabolism , Animals , Humans , Kidney/metabolism , Liver/metabolism , Models, Biological
20.
High Alt Med Biol ; 13(3): 153-61, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22994514

ABSTRACT

The importance of the blood-brain barrier (BBB) in maintaining brain homeostasis cannot be better appreciated than during disease states, where disruption of its function is associated with dramatic detrimental clinical outcome. For decades, neuroscientists and neurobiologists investigated most neurological diseases under the prism of a neuro-centric view, considering the contribution of non-neural components of the CNS (BBB, choroid plexus) negligible or even irrelevant. However, recent reviews have highlighted the importance of BBB breakdown in major neurological diseases. Hypoxia, as well as hypoxia/reoxygenation, are key components of many neurological diseases and have been shown to contribute to barrier disturbance and dysfunction significantly. Since the master regulator of the hypoxic response, hypoxia inducible factor 1 (HIF-1), is a key determinant for adaptation of cells and tissues to oxygen deprivation, it is likely that this transcription factor also plays a key role in barrier permeability. The possible future use of HIF-1 stabilizers for treatment of diseases characterized by oxygen deprivation to increase neuronal/cell survival means this question is now very pertinent. This review will focus its attention on the role of HIF-1 in BBB breakdown following hypoxic/ischemic injury and the implications for such therapies in a clinical setting.


Subject(s)
Blood-Brain Barrier/metabolism , Hypoxia-Inducible Factor 1/metabolism , Hypoxia/metabolism , Ischemia/metabolism , Blood-Brain Barrier/cytology , Blood-Brain Barrier/physiopathology , Homeostasis , Humans , Hypoxia/physiopathology , Ischemia/physiopathology , Permeability , Procollagen-Proline Dioxygenase/antagonists & inhibitors , Signal Transduction , Tight Junctions
SELECTION OF CITATIONS
SEARCH DETAIL
...