Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 30(15): 27293-27303, 2022 Jul 18.
Article in English | MEDLINE | ID: mdl-36236903

ABSTRACT

Photoplethysmography (PPG) is an optical technique that monitors blood oxygen saturation levels, typically with the use of pulse oximeters. Conventional pulse oximetry estimates the ratio of light absorbed at two wavelengths. Attempts have been made to improve the precision of these measurements by using polarized light, with the tradeoff of requiring multiple sequential measurements. We demonstrate a novel PPG technique that uses radially polarized light generated by a light-emitting diode (LED) to obtain single-shot, blood oxygen-saturation measurements using a single wavelength at a rate of 50 fps. Our work, to the best of our knowledge, presents both a novel use of a vector beam and a first demonstration of vector-beam generation using LEDs.


Subject(s)
Oximetry , Photoplethysmography , Oximetry/methods , Oxygen , Photoplethysmography/methods
2.
Acta Biomater ; 136: 124-136, 2021 12.
Article in English | MEDLINE | ID: mdl-34592445

ABSTRACT

Heart valve disease is associated with high morbidity and mortality worldwide resulting in hundreds of thousands of heart valve replacements each year. Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction has led to the failure of TEHVs in preclinical studies. As native unmodified hyaluronic acid (HA) is known to promote healthy tissue development in native heart valves, we hypothesize that adding unmodified HA to fibrin-based scaffolds common to tissue engineering will reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a custom high-throughput culture system, we found that incorporating HA into millimeter-scale fibrin-based cell-populated scaffolds increases initial fiber diameter and cell-scaffold interactions, causing a cascade of mechanical, morphological, and cellular responses. These changes lead to higher levels of scaffold compaction and stiffness, increased cell alignment, and less bundling of fibrin fibers by the cells during culture. These effects significantly reduce scaffold retraction and total contractile force each by around 25%. These findings increase our understanding of how HA alters tissue remodeling and could inform the design of the next generation of tissue engineered heart valves to help reduce retraction. STATEMENT OF SIGNIFICANCE: Tissue engineered heart valves (TEHVs) have the potential to overcome the major limitations of traditional replacement valves; however, leaflet retraction induced by excessive myofibroblast activation has led to failure in preclinical studies. Developing valves are rich in hyaluronic acid (HA), which helps maintain a physiological environment for tissue remodeling without retraction. We hypothesized that adding unmodified HA to TEHVs would reduce retraction by increasing cell-scaffold interactions and density of the scaffolds. Using a high-throughput tissue culture platform, we demonstrate that HA incorporation into a fibrin-based scaffold can significantly reduce tissue retraction and total contractile force by increasing fiber bundling and altering cell-mediated matrix remodeling, therefore increasing gel density and stiffness. These finding increase our knowledge of native HA's effects within the extracellular matrix, and provide a new tool for TEHV design.


Subject(s)
Fibrin , Heart Valve Prosthesis , Extracellular Matrix , Heart Valves , Hyaluronic Acid , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...