Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(8): 9585-9592, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38434841

ABSTRACT

We synthesized a novel curcumin-based bioepoxy resin by introducing epichlorohydrin (ECH) into the hydroxyl groups of curcumin and analyzed it using Fourier transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR). The epoxy equivalent weight (EEW) was determined based on a reaction with sodium hydroxide (NaOH) through titration, and the actual curing process was conducted after exploring the optimal conditions using an amine-based curing agent through dynamic scanning in differential scanning calorimetry (DSC) and isotherm analysis. The cured epoxy resin had a tensile strength, Young's modulus, and glass transition temperature (Tg) of 33 MPa, 1.4 GPa, and 86 °C, respectively. Interestingly, the diunsaturated ketone contained in the epoxy resin showed on-demand chemical cleavability, in that it had been decomposed into an aldehyde and ketone only after having been converted to a hydroxyl ketone through an oxidation reaction. The results of this study can significantly contribute to improving the eco-friendliness and recyclability of epoxy resins used in fields requiring long-term stability and chemical resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...