Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 8(51): 49302-49310, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38162770

ABSTRACT

Silicon, an attractive anode material, suffers fast capacity fading due to the electrical isolation from massive volumetric expansion upon cycling. However, it holds a high theoretical capacity and low operation voltage in its practical application. In this study, a new water-based binder, MXene clay/hollow core-shell acrylate composite, was synthesized through an in situ emulsion polymerization technique to alleviate the fast capacity fading of the silicon anode efficiently. The efficient introduction of conductive MXene clay and the hollow core-shell structure, favorable to electron and ion transport in silicon-based electrodes, gives a novel conceptual design of the binder material. Such a strategy could alleviate electrical isolation after cycling and promises better electrochemical performance of the high-capacity anodes. The effect of the MXene introduction and hollow core-shell on the binder performance is thoroughly investigated using various characterization tools by comparison with no MXene-containing, core-shell acrylate, and commercial styrene-butadiene latex binders. Consequently, the silicon-based electrode containing the MXene clay/hollow core-shell acrylate binder exhibits a high capacity retention of 1351 mAh g-1 at 0.5C after 100 cycles and good rate capability of over 1100 mAh g-1 at 5C.

2.
Nanoscale ; 12(40): 20699-20709, 2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33029602

ABSTRACT

Silicon anodes are promising for high energy batteries because of their excellent theoretical gravimetric capacity (3579 mA h g-1). However, silicon's large volume expansion and poor conductivity hinder its practical application; thus, binders and conductive additives are added, effectively diluting the active silicon material. To address this issue, reports of 2D MXene nanosheets have emerged as additives for silicon anodes, but many of these reports use high MXene compositions of 22-66 wt%, still presenting the issue of diluting the active silicon material. Herein, this report examines the question of what minimal amount of MXene nanosheets is required to act as an effective additive while maximizing total silicon anode capacity. A minimal amount of only 4 wt% MXenes (with 16 wt% sodium alginate and no carbon added) yielded silicon anodes with a capacity of 900 mA h gSi-1 or 720 mA h gtotal-1 at the 200th cycle at 0.5 C-rate. Further, this approach yielded the highest specific energy on a total electrode mass basis (3100 W h kgtotal-1) as comapared to other silicon-MXene constructs (∼115-2000 Wh kgtotal-1) at a corresponding specific power. The stable electrode performance even with a minimal MXene content is attributed to several factors: (1) highly uniform silicon electrodes due to the dispersibility of MXenes in water, (2) the high MXene aspect ratio that enables improved electrical connections, and (3) hydrogen bonding among MXenes, sodium alginate, and silicon particles. All together, a much higher silicon loading (80 wt%) is attained with a lower MXene loading, which then maximizes the capacity of the entire electrode.

3.
RSC Adv ; 10(62): 37898-37904, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-35515155

ABSTRACT

A systematic approach for how to find an appropriate polymer binder for high-capacity LIB anodes is presented in this study. As an example, a newly-developed SAlg-g-PAAm binder, alginate functionalized with sulfo groups and subsequently grafted with polyacrylamide, is used for the Si/C electrode. Various characteristics of the binder polymer itself, two basic characteristics of the electrode with respect to the binder, and the effect of the binder on cell performance are subsequently investigated. In all respects, the SAlg-g-PAAm polymer is a very promising binder for high-capacity anodes. The sulfo groups in the binder improve the ionic conductivities in both the binder and the electrode, leading to reduced charge transfer resistance. In addition, the sulfonation of the alginate grafted with polyacrylamide significantly enhances the mechanical and adhesion properties of the binder and consequently decreases the volume change generated during cycles. These advantages of the SAlg-g-PAAm binder ultimately lead to a considerable enhancement in the electrochemical performance of the high-capacity Si/C electrodes.

4.
J Nanosci Nanotechnol ; 13(12): 7855-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24266152

ABSTRACT

A high-capacity silicon-carbon core-shell (Si/C) supported by ball-milled graphite (BMG) was synthesized in situ using a hydrosilylation reaction and tested as an anode material for lithium ion batteries (LIBs) in the investigation of the effects of dual buffer layers of carbon shell and BMG. The Si/C/BMG sample effectively absorbed high volumetric expansion/contraction generated during charge/discharge process due to the assistance of dual elastic buffers of carbon shell and BMG. As a result, after 50 charge/discharge cycles, the Si/C/BMG electrodes still had a very high capacity of 1615 mAh/g, whereas raw Si, Si/C, and a mechanical mixture of Si/C and BMG were less than 500 mAh/g. The results of various electrochemical characterization techniques revealed that the dual buffer layers were favorable in decreasing electron and ion transfer resistance. It was also shown from ex situ TEM results that the carbon layers behaved as anti-amorphization layers decreasing the amorphization rate of crystalline Si during the alloying/dealloying of Li with Si.

5.
J Nanosci Nanotechnol ; 13(5): 3650-4, 2013 May.
Article in English | MEDLINE | ID: mdl-23858921

ABSTRACT

The effect of dual-layered membrane electrode assemblies (d-MEAs) on the performance of a polymer electrolyte membrane fuel cell (PEMFC) was investigated using the following characterization techniques: single cell performance test, electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV). It has been shown that the PEMFC with d-MEAs has better cell performance than that with typical mono-layered MEAs (m-MEAs). In particular, the d-MEA whose inner layer is composed of multi-walled carbon nanotubes (MWCNTs) showed the best fuel cell performance. This is due to the fact that the d-MEAs with MWCNTs have the highest electrochemical surface area and the lowest activation polarization, as observed from the CV and EIS test.


Subject(s)
Electric Power Supplies , Electrodes , Membranes, Artificial , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Polymers/chemistry , Electrolytes/chemistry , Equipment Design , Equipment Failure Analysis , Particle Size
6.
J Nanosci Nanotechnol ; 12(7): 5435-9, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22966585

ABSTRACT

SnO2 nanoparticles were supported on ball-milled graphite (BMG) or carbon nanotubes (CNTs) using a chemical reduction method with ethylene glycol, and the electrochemical properties of the nanocomposites were evaluated as anode active materials of lithium-ion batteries. The BMG and CNTs contributed to an increase in both the capacity enhancement and cyclic stability compared to that of commercial graphite. In particular, the mixture electrode of SnO2/BMG:SnO2/CNT = 3:1 (in weight ratio) showed higher performance in the reversible capacity and cyclic stability than did the SnO2/BMG and SnO2/CNT electrodes. This might be resulted from the network formation for excellent electronic path by CNT distributed on SnO2/BMG composites.

7.
J Nanosci Nanotechnol ; 12(4): 3317-21, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22849115

ABSTRACT

Nano-sized Cu-Sn and Cu oxide particles supported on ball-milled graphite were synthesized, and their electrochemical characteristics for use as anode active materials in lithium-ion batteries were investigated. The samples were also characterized via FE-SEM, XRD, and TGA. Most of the Cu oxides on BMG were monoclinic CuO crystals, whereas the Cu-Sn particles were composed of hexagonal Cu3Sn and tetragonal SnO2 crystals. These particles may contribute to an increase in the reversible capacity of lithium ion batteries.


Subject(s)
Copper/chemistry , Electric Power Supplies , Graphite/chemistry , Lithium/chemistry , Nanotechnology , Tin/chemistry , Microscopy, Electron, Scanning , Thermogravimetry
8.
J Nanosci Nanotechnol ; 11(11): 10193-200, 2011 Nov.
Article in English | MEDLINE | ID: mdl-22413364

ABSTRACT

Among lithium alloy metals, silicon is an attractive candidate to replace commercial graphite anode because silicon possesses about ten times higher theoretical energy density than graphite. However, electrically nonconducting silicon undergoes a large volume changes during lithiation/delithiation reactions, which causes fast loss of storage capacity upon cycling due to electrode pulverization. To alleviate these problems, electrodes comprising Si nanoparticles (20 nm) and graphene platelets, denoted as SiGP-1 (Si = 35.5 wt%) and SiGP-2 (Si = 57.6 wt%), have been prepared with low cost materials and using easily scalable solution-dispersion methods. X-ray diffraction (XRD), scanning electron microscopy (SEM) and high-resolution transmission electron microscopy (HR-TEM) analyses indicated that Si nanoparticles were highly dispersed and encapsulated between graphene sheets that stacked into platelets in which portions of graphite phases were reconstituted. From the galvanostatic cycling test, SiGP-1 exhibited a reversible lithiation capacity of approximately 802 mAh/g with excellent capacity retention up to 30 cycles at 100 mA/g. Further cycling with a step-increase of current density (100-1,000 mA/g) up to 120 cycles revealed that it has an appreciable power capability as well, showing 520 mAh/g at 1,000 mA/g with capacity loss of 0.2-0.3% per cycle. The improved electrochemical performance is attributed to the robust electrical integrity provided by flexible graphene sheets that encapsulated dispersed Si nanopraticles and stacked into platelets with portions of reconstituted graphite phases in their structure.

SELECTION OF CITATIONS
SEARCH DETAIL
...