Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Cytokine ; 169: 156308, 2023 09.
Article in English | MEDLINE | ID: mdl-37536223

ABSTRACT

OBJECTIVE: We investigated the association between altered levels of inflammatory proteins in the cervicovaginal fluid (CVF) and acute histologic chorioamnionitis (HCA) and funisitis in women with preterm labor (PTL). METHODS: In this study, a total of 134 consecutive singleton pregnant women with PTL (at 23+0-34+0 weeks) who delivered preterm (at  < 37 weeks) and from whom CVF samples were collected at admission were retrospectively enrolled. The CVF levels of haptoglobin, interleukin-6/8, kallistatin, lipocalin-2, matrix metalloproteinase (MMP)-8, resistin, S100 calcium-binding protein A8, and serpin A1 were determined using enzyme-linked immunosorbent assay. The placentas were histologically analyzed after delivery. RESULTS: Multiple logistic regression analyses showed significant associations between elevated CVF interleukin-8 and resistin levels and acute HCA after adjusting for baseline covariates (e.g., gestational age at sampling). CVF haptoglobin, interleukin-6/8, kallistatin, MMP-8, and resistin levels were significantly higher in women with funisitis than in those without, whereas the baseline covariates were similar between the two groups (P > 0.1). The area under the receiver operating characteristic curves of the aforementioned biomarkers ranged from 0.61 to 0.77 regarding each outcome. Notably, HCA risk significantly increased with increasing CVF levels of interleukin-8 and resistin (P for trend  < 0.05). CONCLUSIONS: Haptoglobin, interleukin-6/8, kallistatin, MMP-8, and resistin were identified as potential inflammatory CVF biomarkers predictive of acute HCA and funisitis in women with PTL. Moreover, the risk severity of acute HCA may be associated with the degree of the inflammatory response in the CVF (particularly based on interleukin-8 levels).


Subject(s)
Chorioamnionitis , Obstetric Labor, Premature , Infant, Newborn , Female , Pregnancy , Humans , Chorioamnionitis/diagnosis , Chorioamnionitis/metabolism , Interleukin-8 , Matrix Metalloproteinase 8 , Resistin , Retrospective Studies , Interleukin-6 , Haptoglobins , Biomarkers/metabolism , Amniotic Fluid/metabolism
2.
Am J Reprod Immunol ; 90(3): e13756, 2023 09.
Article in English | MEDLINE | ID: mdl-37641380

ABSTRACT

PROBLEM: To examine whether the severity of spontaneous preterm birth (SPTB) risk after rescue cerclage for acute cervical insufficiency (CI) is linked to the degree of inflammatory response in the amniotic fluid (AF) based on the concentrations of various inflammatory proteins and prior obstetric history. METHOD OF STUDY: We conducted a retrospective cohort study of 65 singleton pregnant women (17-25 weeks) who underwent rescue cerclage following the diagnosis of acute CI and were subjected to amniocentesis. EN-RAGE, IL-6, IL-8, and IP-10 as inflammatory mediators and kallistatin, MMP-2/8, and uPA as extracellular matrix remodeling-related molecules were assayed in the AF using ELISA. The level of each inflammatory mediator was divided into quartiles. RESULTS: Intra-amniotic inflammation (IAI; AF IL-6 level ≥2.6 ng/mL) was independently associated with SPTB after cerclage placement. The odds of SPTB at < 32 weeks, even after adjusting for confounders, increased significantly with each increasing quartile of baseline AF levels for each inflammatory mediator (p for trend < .05). Kaplan-Meier survival curves showed that the cerclage-to-delivery intervals were significantly shorter as the quartiles of AF EN-RAGE and MMP-8 increased (log-rank test, p < .01 each). Neither previous term birth nor prior PTB was associated with SPTB risk or cerclage-to-delivery interval after rescue cerclage. Multiparous women who experience CI after term birth showed significantly elevated levels of MMP-8 and reduced kallistatin levels in the AF. CONCLUSION: In patients with CI, SPTB risk (especially risk severity) after rescue cerclage is associated with the degree of the inflammatory response in AF as well as the presence of IAI but not with prior obstetric history.


Subject(s)
Interleukin-6 , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Matrix Metalloproteinase 8 , Retrospective Studies , Amniocentesis
3.
Mol Pharmacol ; 104(5): 214-229, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37595967

ABSTRACT

Nonalcoholic steatohepatitis (NASH) is a severe liver metabolic disorder, however, there are still no effective and safe drugs for its treatment. Previous clinical trials used various therapeutic approaches to target individual pathologic mechanisms, but these approaches were unsuccessful because of the complex pathologic causes of NASH. Combinatory therapy in which two or more drugs are administered simultaneously to patients with NASH, however, carries the risk of side effects associated with each individual drug. To solve this problem, we identified gossypetin as an effective dual-targeting agent that activates AMP-activated protein kinase (AMPK) and decreases oxidative stress. Administration of gossypetin decreased hepatic steatosis, lobular inflammation and liver fibrosis in the liver tissue of mice with choline-deficient high-fat diet and methionine-choline deficient diet (MCD) diet-induced NASH. Gossypetin functioned directly as an antioxidant agent, decreasing hydrogen peroxide and palmitate-induced oxidative stress in the AML12 cells and liver tissue of MCD diet-fed mice without regulating the antioxidant response factors. In addition, gossypetin acted as a novel AMPK activator by binding to the allosteric drug and metabolite site, which stabilizes the activated structure of AMPK. Our findings demonstrate that gossypetin has the potential to serve as a novel therapeutic agent for nonalcoholic fatty liver disease /NASH. SIGNIFICANCE STATEMENT: This study demonstrates that gossypetin has preventive effect to progression of nonalcoholic steatohepatitis (NASH) as a novel AMP-activated protein kinase (AMPK) activator and antioxidants. Our findings indicate that simultaneous activation of AMPK and oxidative stress using gossypetin has the potential to serve as a novel therapeutic approach for nonalcoholic fatty liver disease /NASH patients.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Animals , Mice , Non-alcoholic Fatty Liver Disease/drug therapy , AMP-Activated Protein Kinases/metabolism , Antioxidants/metabolism , Liver/metabolism , Oxidative Stress , Choline/metabolism , Choline/pharmacology , Choline/therapeutic use , Methionine/metabolism , Methionine/pharmacology , Mice, Inbred C57BL , Disease Models, Animal
4.
Am J Reprod Immunol ; 90(1): e13736, 2023 07.
Article in English | MEDLINE | ID: mdl-37382175

ABSTRACT

PROBLEM: We aimed to determine whether altered levels of various extracellular matrix (ECM)-related and serine protease proteins in the amniotic fluid (AF) are associated with imminent spontaneous preterm birth (SPTB; ≤7 days) and intra-amniotic inflammation and/or microbial invasion of the amniotic cavity (IAI/MIAC) in women with early preterm labor (PTL). METHOD OF STUDY: This retrospective cohort study included 252 women with singleton pregnancies undergoing transabdominal amniocentesis who demonstrated PTL (24-31 weeks). The AF was cultured for microorganism detection to characterize MIAC. IL-6 concentrations were determined in the AF samples to identify IAI (≥2.6 ng/mL). The following mediators were measured in the AF samples using ELISA: kallistatin, lumican, MMP-2, SPARC, TGFBI, and uPA. RESULTS: Kallistatin, MMP-2, TGFBI, and uPA levels were significantly higher and SPARC and lumican levels were significantly lower in the AF of women who spontaneously delivered within 7 days than in the AF of those who delivered after 7 days; the levels of the first five mediators were independent of baseline clinical variables. In the multivariate analysis, elevated levels of kallistatin, MMP-2, TGFBI, and uPA and low levels of lumican and SPARC in the AF were significantly associated with IAI/MIAC and MIAC, even after adjusting for the gestational age at sampling. The areas under the curves of the aforementioned biomarkers ranged from 0.58 to 0.87 for the diagnoses of each of the corresponding endpoints. CONCLUSION: ECM-related (SPARC, TGFBI, lumican, and MMP-2) and serine protease (kallistatin and uPA) proteins in the AF are involved in preterm parturition and regulation of intra-amniotic inflammatory/infectious responses in PTL.


Subject(s)
Obstetric Labor, Premature , Premature Birth , Infant, Newborn , Pregnancy , Female , Humans , Serine Proteases , Matrix Metalloproteinase 2 , Lumican , Amniotic Fluid , Retrospective Studies
5.
Graefes Arch Clin Exp Ophthalmol ; 261(9): 2477-2488, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37022494

ABSTRACT

PURPOSE: To determine whether 14 inflammation-, angiogenesis-, and adhesion-related proteins in cord blood (CB), alone or in combination with conventional perinatal factors, could predict retinopathy of prematurity (ROP) in preterm infants. METHODS: Data from 111 preterm infants (born at ≤ 32.0 weeks) were retrospectively reviewed. The levels of endoglin, E-selectin, HSP70, IGFBP-3/4, LBP, lipocaline-2, M-CSFR, MIP-1α, pentraxin 3, P-selectin, TGFBI, TGF-ß1, and TNFR2 were assessed in stored CB samples collected at birth using ELISA kits. The primary endpoints included severe ROP (≥ stage 3) and type 1 ROP requiring treatment. RESULTS: ROP was diagnosed in 29 infants (26.1%), among whom 14 (12.6%) had severe ROP and seven (6.3%) had type 1 ROP. Multivariate logistic regression showed that decreased CB TGFBI levels were significantly associated with severe ROP and type 1 ROP after adjusting for gestational age at birth. Stepwise regression analysis allowed to design prediction models with good accuracy, which comprised low CB TGFBI levels and low birth weight (BW) as predictors for severe ROP (area under the curve [AUC] = 0.888), and low CB endoglin levels and low BW as predictors for type 1 ROP (AUC = 0.950). None of the other CB proteins evaluated were found to be associated with severe ROP or type 1 ROP. CONCLUSIONS: Low CB TGFBI levels are associated with severe ROP and type 1 ROP, independently of gestational age. Moreover, combined predictive models based on CB TGFBI and endoglin levels, along with BW data, may act as good indicators at birth for the neonatal risk of ROP progression.


Subject(s)
Infant, Premature , Retinopathy of Prematurity , Infant , Pregnancy , Female , Infant, Newborn , Humans , Retrospective Studies , Transforming Growth Factor beta , Retinopathy of Prematurity/diagnosis , Retinopathy of Prematurity/metabolism , Fetal Blood/metabolism , Endoglin , Risk Factors , Gestational Age , Biomarkers , Transforming Growth Factors , Birth Weight
6.
Am J Reprod Immunol ; 89(1): e13645, 2023 01.
Article in English | MEDLINE | ID: mdl-36318832

ABSTRACT

PROBLEM: To determine whether altered levels of 13 plasma biomarkers, alone or in combination, could be independently associated with histologic chorioamnionitis (HCA) and microbial-associated HCA (defined as the presence of HCA along with microbial invasion) in women with preterm labor (PTL). METHODS OF STUDY: This was a retrospective cohort study involving 77 singleton pregnant women with PTL (23-34 gestational weeks) who delivered within 96 h of plasma and amniotic fluid (AF) sampling. DKK-3, E-selectin, Fas, haptoglobin, IGFBP-1, kallistatin, MMP-2, MMP-8, pentraxin 3, progranulin, P-selectin, SAA4, and TGFBI levels were assayed in plasma samples by ELISA. AF obtained via amniocentesis was used for microorganism identification. RESULTS: Multiple logistic regression analyses revealed significant associations between low plasma IGFBP-1 levels and acute HCA, and between low plasma Fas and kallistatin levels, and elevated plasma P-selectin levels and microbial-associated HCA (all p < .05), after adjusting for gestational age. Using a stepwise regression procedure, a multi-biomarker panel for microbial-associated HCA was developed, which included plasma MMP-2, kallistatin, and P-selectin levels (area under the curve [AUC], .867). The AUC for this three-marker panel was significantly or borderline significantly greater than that of any single variable included in the panel. However, a predictive model for acute HCA could not be developed because only one variable (MMP-2) was selected. CONCLUSIONS: These findings demonstrate that IGFBP-1, Fas, kallistatin, and P-selectin are associated with acute HCA and microbial-associated HCA in women with PTL. Their combined use can significantly improve the diagnostic ability for the detection of microbial-associated HCA.


Subject(s)
Chorioamnionitis , Obstetric Labor, Premature , Infant, Newborn , Female , Pregnancy , Humans , Matrix Metalloproteinase 2 , Retrospective Studies , Chorioamnionitis/diagnosis , Amniotic Fluid , Biomarkers
7.
Oncol Res ; 32(2): 421-432, 2023.
Article in English | MEDLINE | ID: mdl-38186576

ABSTRACT

Genetic information is transcribed from genomic DNA to mRNA, which is then translated into three-dimensional proteins. mRNAs can undergo various post-transcriptional modifications, including RNA editing that alters mRNA sequences, ultimately affecting protein function. In this study, RNA editing was identified at the 499th base (c.499) of human vaccinia-related kinase 2 (VRK2). This RNA editing changes the amino acid in the catalytic domain of VRK2 from isoleucine (with adenine base) to valine (with guanine base). Isoleucine-containing VRK2 has higher kinase activity than the valine-containing VRK2, which leads to an increase in tumor cell proliferation. Earlier we reported that VRK2 directly interacts with dystrobrevin-binding protein (dysbindin) and results in reducing its stability. Herein, we demonstrate that isoleucine-containing VRK2 decreases the level of dysbindin than valine-containing VRK2. Dysbindin interacts with cyclin D and thereby regulates its expression and function. The reduction in the level of dysbindin by isoleucine-containing VRK2 further enhances the cyclin D expression, resulting in increased tumor growth and reduction in survival rates. It has also been observed that in patient samples, VRK2 level was elevated in breast cancer tissue compared to normal breast tissue. Additionally, the isoleucine form of VRK2 exhibited a greater increase in breast cancer tissue. Therefore, it is concluded that VRK2, especially dependent on the 167th variant amino acid, can be one of the indexes of tumor progression and proliferation.


Subject(s)
Breast Neoplasms , Vaccinia , Humans , Female , Breast Neoplasms/genetics , Isoleucine , Dysbindin , Vaccinia virus , Amino Acids , Valine , Cyclin D , RNA, Messenger
8.
Alzheimers Res Ther ; 14(1): 158, 2022 10 21.
Article in English | MEDLINE | ID: mdl-36271414

ABSTRACT

BACKGROUND: Microglia are the resident immune cells found in our brain. They have a critical role in brain maintenance. Microglia constantly scavenge various waste materials in the brain including damaged or apoptotic neurons and Aß. Through phagocytosis of Aß, microglia prevent the accumulation of Aß plaque in the brain. However, in Alzheimer's disease (AD) patients, chronic exposure to Aß makes microglia to become exhausted, which reduces their phagocytic activity against Aß. Since microglia play an important role in Aß clearance, enhancing microglial phagocytic activity against Aß is a promising target for AD treatment. Therefore, there is a great need for therapeutic candidate that enhances microglial Aß clearance while inhibiting microglia's pathogenic properties. METHODS: In vivo studies were conducted with 5xFAD AD model mice by treating gossypetin for 13 weeks through intragastric administration. Their spatial learning and memory were evaluated through behavior tests such as Y-maze and Morris Water Maze test. Hippocampus and cortex were acquired from the sacrificed mice, and they were used for histological and biochemical analysis. Also, mouse tissues were dissociated into single cells for single-cell RNA sequencing (scRNA-seq) analysis. Transcriptome of microglial population was analyzed. Mouse primary microglia and BV2 mouse microglial cell line were cultured and treated with fluorescent recombinant Aß to evaluate whether their phagocytic activity is affected by gossypetin. RESULTS: Gossypetin treatment improved the spatial learning and memory of 5xFAD by decreasing Aß deposition in the hippocampus and cortex of 5xFAD. Gossypetin induced transcriptomic modulations in various microglial subpopulations, including disease-associated microglia. Gossypetin enhanced phagocytic activity of microglia while decreasing their gliosis. Gossypetin also increased MHC II+ microglial population. CONCLUSIONS: Gossypetin showed protective effects against AD by enhancing microglial Aß phagocytosis. Gossypetin appears to be a novel promising therapeutic candidate against AD.


Subject(s)
Alzheimer Disease , Spatial Learning , Animals , Mice , Mice, Transgenic , Disease Models, Animal , Alzheimer Disease/genetics , Microglia/metabolism , Phagocytosis , Amyloid beta-Peptides/metabolism
9.
Neurotherapeutics ; 19(5): 1546-1565, 2022 09.
Article in English | MEDLINE | ID: mdl-35917087

ABSTRACT

Abnormal productions of amyloid beta (Aß) plaque and chronic neuroinflammation are commonly observed in the brain of patients with Alzheimer's disease, and both of which induce neuronal cell death, loss of memory, and cognitive dysfunction. However, many of the drugs targeting the production of Aß peptides have been unsuccessful in treating Alzheimer's disease. In this study, we identified synthetic novel peroxisome proliferator-activating receptor (PPAR) agonist, DTMB, which can ameliorate the chronic inflammation and Aß pathological progression of Alzheimer's disease. We discovered that DTMB attenuated the proinflammatory cytokine production of microglia by reducing the protein level of NF-κB. DTMB also improved the learning and memory defects and reduced the amount of Aß plaque in the brain of 5xFAD mice. This reduction in Aß pathology was attributed to the changes in gliosis and chronic inflammation level. Additionally, bulk RNA-sequencing showed that genes related to inflammation and cognitive function were changed in the hippocampus and cortex of DTMB-treated mice. Our findings demonstrate that DTMB has the potential to be a novel therapeutic agent for Alzheimer's disease.


Subject(s)
Alzheimer Disease , Receptors, Artificial , Mice , Animals , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Microglia/metabolism , Amyloid beta-Peptides/metabolism , Peroxisome Proliferator-Activated Receptors/metabolism , Peroxisome Proliferator-Activated Receptors/pharmacology , Peroxisome Proliferator-Activated Receptors/therapeutic use , Mice, Transgenic , NF-kappa B/metabolism , Peroxisome Proliferators/metabolism , Peroxisome Proliferators/pharmacology , Peroxisome Proliferators/therapeutic use , Receptors, Artificial/metabolism , Receptors, Artificial/therapeutic use , Disease Models, Animal , Plaque, Amyloid/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Cytokines/metabolism , RNA/metabolism , RNA/pharmacology , RNA/therapeutic use
10.
Biomed Pharmacother ; 152: 113272, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35716437

ABSTRACT

Microphthalmia-associated transcription factor (MITF) is highly expressed in melanocytes and is the main regulator of melanogenesis and melanocyte cell fate. Although MITF is important for the differentiation and development of melanocytes, it is also considered an oncogene of skin melanoma. Based on these findings, MITF could be an attractive therapeutic target for skin cancer intervention. This study identified 8-methoxybutin as an inhibitor of MITF and investigated the underlying mechanism. 8-Methoxybutin inhibited α-MSH-induced melanogenesis in murine melanoma cells (B16F10) and skin melanoma proliferation by reducing melanogenic gene expression via blockade of the transactivation activity of MITF. In silico docking analysis and pull-down analysis suggested that 8-methoxybutin binds to the DNA-binding domain of MITF and further inhibits its binding to the E-box in the promoter of target genes, including tyrosinase. In addition, 8-methoxybutin suppressed growth of skin melanoma in a xenograft mouse model. These results indicate that 8-methoxybutin has potential as a therapeutic agent for hyperpigmentation disorder and skin cancer. SIGNIFICANCE STATEMENT: 8-Methoxybutin inhibits MITF transactivation activity resulting suppression of melanogenesis and skin melanoma growth.


Subject(s)
Melanoma , Skin Neoplasms , Animals , Cell Line, Tumor , Cell Proliferation , Humans , Melanins/metabolism , Melanocytes/metabolism , Melanoma/drug therapy , Melanoma/genetics , Melanoma/metabolism , Mice , Microphthalmia-Associated Transcription Factor/metabolism , Monophenol Monooxygenase/metabolism , Skin Neoplasms/drug therapy , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Transcriptional Activation , alpha-MSH/metabolism , alpha-MSH/pharmacology , Melanoma, Cutaneous Malignant
11.
Toxics ; 10(3)2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35324742

ABSTRACT

The discovery of biomarkers for assessing soil health requires the exploration of organisms that can explain the core functions of soil and identification of species with major roles in these functions. However, identifying specific keystone markers within the soil microbiota is challenging. Next-generation sequencing (NGS)-based molecular-biological methods have revealed information on soil biodiversity; however, whether this biodiversity is related to soil health remains unclear. In this study, we performed NGS on grassland surface soil to compare the prokaryotic and eukaryotic genetic diversity to determine the chemical soil quality and examined markers associated with soil health. Microorganisms associated with the nitrogen cycle, bioremediation, plant pathogenicity, antibiotic production, and material degradation showed potential for use as markers. To propose a framework for soil health assessment, we not only used traditional indicators, such as chemical and physical measures, but also assessed metagenomics data of soil by land use to identify the major factors influencing the microbial structure in soil. Moreover, major keystone species were identified. Furthermore, the microbial genetic diversity of generally healthy surface soil, such as forests, farmland, and parks, was determined. These findings provide basic data for exploring soil health-related biomarkers.

12.
J Colloid Interface Sci ; 615: 768-777, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35176543

ABSTRACT

HYPOTHESIS: The transformation from reverse micelles to reverse vesicles is influenced by electrostatic interactions between lecithin headgroups and inorganic salts. The electrostatic interactions are expected to influence molecular geometry of lecithin, resulting in a reduction in critical packing parameter (p). Hence, it should be possible to drive structural transitions of reverse self-assembled structures by addition of inorganic salts to lecithin solutions. EXPERIMENTS: Structural transitions of reverse micelles and reverse vesicles were formulated including lecithin and inorganic salts as a function of concentration in cyclohexane. A systematic study was performed using inorganic salts with the different valences of the cations such as Li+, Ca2+, and La3+. To probe the nanodomain structures from the lecithin/salt mixtures, small-angle X-ray scattering (SAXS) and transmission electron microscopy (TEM) were used. FINDINGS: Adding salts to lecithin solutions induced the systematic transformation of reverse self-assembled structures from reverse spherical micelles to reverse cylindrical micelles and finally to reverse vesicles. The transformation was also correlated with interactions between lecithin headgroups and salts, that is, Li+ < Ca2+ < La3+. In addition, a water-soluble dye such as rhodamine B (RB) can be readily encapsulated into reverse micelles and vesicles, indicating that they are potentially useful for controlled solute delivery.


Subject(s)
Lecithins , Micelles , Bile Acids and Salts , Lecithins/chemistry , Phosphatidylcholines/chemistry , Salts , Scattering, Small Angle , X-Ray Diffraction
13.
Toxics ; 9(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34941754

ABSTRACT

Soil washing and landfarming processes are widely used to remediate total petroleum hydrocarbon (TPH)-contaminated soil, but the impact of these processes on soil bacteria is not well understood. Four different states of soil (uncontaminated soil (control), TPH-contaminated soil (CS), after soil washing (SW), and landfarming (LF)) were collected from a soil remediation facility to investigate the impact of TPH and soil remediation processes on soil bacterial populations by metagenomic analysis. Results showed that TPH contamination reduced the operational taxonomic unit (OTU) number and alpha diversity of soil bacteria. Compared to SW and LF remediation techniques, LF increased more bacterial richness and diversity than SW, indicating that LF is a more effective technique for TPH remediation in terms of microbial recovery. Among different bacterial species, Proteobacteria were the most abundant in all soil groups followed by Actinobacteria, Acidobacteria, and Firmicutes. For each soil group, the distribution pattern of the Proteobacteria class was different. The most abundant classed were Alphaproteobacteria (16.56%) in uncontaminated soils, Deltaproteobacteria (34%) in TPH-contaminated soils, Betaproteobacteria (24%) in soil washing, and Gammaproteobacteria (24%) in landfarming, respectively. TPH-degrading bacteria were detected from soil washing (23%) and TPH-contaminated soils (21%) and decreased to 12% in landfarming soil. These results suggest that soil pollution can change the diversity of microbial groups and different remediation techniques have varied effective ranges for recovering bacterial communities and diversity. In conclusion, the landfarming process of TPH remediation is more advantageous than soil washing from the perspective of bacterial ecology.

14.
Autophagy ; 16(1): 86-105, 2020 01.
Article in English | MEDLINE | ID: mdl-30907226

ABSTRACT

Saturated fatty acid (SFA)-induced lipotoxicity is caused by the accumulation of reactive oxygen species (ROS), which is associated with damaged mitochondria. Moreover, lipotoxicity is crucial for the progression of nonalcoholic steatohepatitis (NASH). Autophagy is required for the clearance of protein aggregates or damaged mitochondria to maintain cellular metabolic homeostasis. The NFE2L2/NRF2 (nuclear factor, erythroid 2 like 2)-KEAP1 (kelch like ECH associated protein 1) pathway is essential for the elimination of ROS. ULK1 (unc-51 like autophagy activating kinase 1; yeast Atg1) is involved in the initiation of autophagy; however, its role in lipotoxicity-induced cell death in hepatocytes and mouse liver has not been elucidated. We now show that ULK1 potentiates the interaction between KEAP1 and the autophagy adaptor protein SQSTM1/p62, thereby mediating NFE2L2 activation in a manner requiring SQSTM1-dependent autophagic KEAP1 degradation. Furthermore, ULK1 is required for the autophagic removal of damaged mitochondria and to enhance binding between SQSTM1 and PINK1 (PTEN induced kinase 1). This study demonstrates the molecular mechanisms underlying the cytoprotective role of ULK1 against lipotoxicity. Thus, ULK1 could represent a potential therapeutic target for the treatment of NASH.Abbreviations: ACTB: actin beta; CM-H2DCFDA:5-(and-6)-chloromethyl-2',7'-dichlorodihydrofluorescein diacetate; CQ: chloroquine; CUL3: cullin 3; DMSO: dimethyl sulfoxide; GSTA1: glutathione S-transferase A1; HA: hemagglutinin; Hepa1c1c7: mouse hepatoma cells; HMOX1/HO-1: heme oxygenase 1; KEAP1: kelch like ECH associated protein 1; LPS: lipopolysaccharides; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; MAPK8/JNK: mitogen-activated protein kinase 8; MEF: mouse embryonic fibroblast; MFN1: mitofusin 1; MTT: 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide; NASH: nonalcoholic steatohepatitis; NFE2L2/NRF2: nuclear factor, erythroid 2 like 2; NQO1: NAD(P)H quinone dehydrogenase 1; PA: palmitic acid; PARP: poly (ADP-ribose) polymerase 1; PINK1: PTEN induced kinase 1; PRKAA1/2: protein kinase AMP-activated catalytic subunits alpha1/2; PRKN/PARK2: parkin RBR E3 ubiquitin protein ligase; PRKC/PKC: protein kinase C; RBX1: ring-box 1; ROS: reactive oxygen species; SFA: saturated fatty acid; siRNA: small interfering RNA; SQSTM1/p62: sequestosome 1; TOMM20: translocase of outer mitochondrial membrane 20; TUBA: tubulin alpha; TUNEL: terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling; ULK1: unc-51 like autophagy activating kinase 1.


Subject(s)
Autophagy-Related Protein-1 Homolog/metabolism , Autophagy/physiology , Cytoprotection/physiology , Intracellular Signaling Peptides and Proteins/metabolism , Kelch-Like ECH-Associated Protein 1/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Autophagy/genetics , Humans , NF-E2-Related Factor 2/metabolism , Sequestosome-1 Protein/metabolism
15.
Glia ; 67(9): 1667-1679, 2019 09.
Article in English | MEDLINE | ID: mdl-31050055

ABSTRACT

During postnatal neurodevelopment, excessive synapses must be eliminated by microglia to complete the establishment of neural circuits in the brain. The lack of synaptic regulation by microglia has been implicated in neurodevelopmental disorders such as autism, schizophrenia, and intellectual disability. Here we suggest that vaccinia-related kinase 2 (VRK2), which is expressed in microglia, may stimulate synaptic elimination by microglia. In VRK2-deficient mice (VRK2KO ), reduced numbers of presynaptic puncta within microglia were observed. Moreover, the numbers of presynaptic puncta and synapses were abnormally increased in VRK2KO mice by the second postnatal week. These differences did not persist into adulthood. Even though an increase in the number of synapses was normalized, adult VRK2KO mice showed behavioral defects in social behaviors, contextual fear memory, and spatial memory.


Subject(s)
Brain/enzymology , Brain/growth & development , Microglia/enzymology , Protein Serine-Threonine Kinases/metabolism , Synapses/enzymology , Animals , Brain/cytology , Cells, Cultured , Excitatory Postsynaptic Potentials/physiology , Fear/physiology , Humans , Male , Memory/physiology , Mice, Inbred C57BL , Mice, Knockout , Microglia/cytology , Miniature Postsynaptic Potentials/physiology , Protein Serine-Threonine Kinases/genetics , Social Behavior , Tissue Culture Techniques
16.
Molecules ; 21(9)2016 Aug 24.
Article in English | MEDLINE | ID: mdl-27563860

ABSTRACT

Phytochemical investigation of the root bark of Morus alba has led to the isolation and identification of three new isoprenylated flavonoids, namely sanggenon U (1), sanggenon V (2), and sanggenon W (3), along with four known isoprenylated flavonoids: euchrenone a7 (4), sanggenon J (5), kuwanon E (6), and kuwanon S (7). All compounds were isolated by repeated silica gel (SiO2), octadecyl SiO2 (ODS), and Sephadex LH-20 open column chromatography. The structure of the compounds were determined based on spectroscopic analyses, including nuclear magnetic resonance (NMR), mass spectrometry (MS), circular dichroism (CD), and infrared (IR). In addition, compounds 1-4 were isolated for the first time from the root bark of M. alba in this study.


Subject(s)
Flavonoids/chemistry , Flavonoids/isolation & purification , Morus/chemistry , Plant Bark/chemistry , Plant Roots/chemistry , Molecular Structure
17.
Molecules ; 20(11): 20823-31, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26610451

ABSTRACT

A phytochemical investigation of the whole plants of Adonis multiflora Nishikawa & Koki Ito. resulted in the isolation and identification of two new cardenolides--adonioside A (1) and adonioside B (6)--as well as four known cardenolides: tupichinolide (2) oleandrine (3), cryptostigmin II (4), and cymarin (5). Their structures were elucidated on the basis of NMR, MS, and IR spectroscopic analyses. Compounds 1, 2, 5, and 6 showed significant cytotoxicity against six human cancer cell lines (HCT-116, HepG2, HeLa, SK-OV-3, and SK-MEL-5, and SK-BR-3).


Subject(s)
Adonis/chemistry , Cardenolides/chemistry , Cardenolides/pharmacology , Plant Extracts/chemistry , Plant Extracts/pharmacology , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Cardenolides/isolation & purification , Cell Line, Tumor , Cell Survival/drug effects , Hep G2 Cells , Humans , Inhibitory Concentration 50 , Nuclear Magnetic Resonance, Biomolecular , Plant Extracts/isolation & purification
19.
Sci Rep ; 5: 14570, 2015 Sep 28.
Article in English | MEDLINE | ID: mdl-26412148

ABSTRACT

Many mitotic kinases have been targeted for the development of anti-cancer drugs, and inhibitors of these kinases have been expected to perform well for cancer therapy. Efforts focused on selecting good targets and finding specific drugs to target are especially needed, largely due to the increased frequency of anti-cancer drugs used in the treatment of lung cancer. Vaccinia-related kinase 1 (VRK1) is a master regulator in lung adenocarcinoma and is considered a key molecule in the adaptive pathway, which mainly controls cell survival. We found that ursolic acid (UA) inhibits the catalytic activity of VRK1 via direct binding to the catalytic domain of VRK1. UA weakens surveillance mechanisms by blocking 53BP1 foci formation induced by VRK1 in lung cancer cells, and possesses synergistic anti-cancer effects with DNA damaging drugs. Taken together, UA can be a good anti-cancer agent for targeted therapy or combination therapy with DNA damaging drugs for lung cancer patients.


Subject(s)
Antineoplastic Agents, Phytogenic/pharmacology , Intracellular Signaling Peptides and Proteins/metabolism , Lung Neoplasms/metabolism , Protein Serine-Threonine Kinases/metabolism , Triterpenes/pharmacology , Animals , Antineoplastic Agents, Phytogenic/chemistry , Binding Sites , Catalytic Domain , Cell Line, Tumor , DNA Damage/drug effects , Disease Models, Animal , Doxorubicin/pharmacology , Drug Synergism , Enzyme Activation/drug effects , Humans , Intracellular Signaling Peptides and Proteins/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/chemistry , Lung Neoplasms/drug therapy , Lung Neoplasms/pathology , Models, Molecular , Molecular Conformation , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Interaction Domains and Motifs , Protein Serine-Threonine Kinases/antagonists & inhibitors , Protein Serine-Threonine Kinases/chemistry , Triterpenes/chemistry , Xenograft Model Antitumor Assays , Ursolic Acid
20.
Arch Pharm Res ; 38(11): 2066-75, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25981820

ABSTRACT

A new isoprenylated flavonoid, 2S-5,7,2',4'-tetrahydroxy-3',5'-di-(γ,γ-dimethylallyl)flavanone, sanggenol Q (1), along with seven known isoprenylated flavonoids, sanggenol A (2), sanggenol L (3), kuwanon T (4), cyclomorusin (5), sanggenon F (6), sanggenol O (7), and sanggenon N (8), three known Diels-Alder type adducts, sanggenon G (9), mulberrofuran G (10), and mulberrofuran C (11), and a known benzofuran, moracin E (12), were isolated from the root bark of Morus alba using silica gel, ODS, and Sephadex LH-20 column chromatography. Chemical structures were determined based on spectroscopic data analyses including NMR, MS, CD, and IR. For the first time, compounds 1 and 7 were isolated from the root bark of M. alba. All compounds were evaluated for hepatoprotective activity on t-BHP-induced oxidative stress in HepG2 cells and neuroprotective activity on glutamate-induced cell death in HT22 cells. Compounds 1, 4, 8, 10, and 11 showed protective effects on t-BHP-induced oxidative stress with EC50 values of 6.94 ± 0.38, 30.32 ± 6.82, 23.45 ± 4.72, 15.31 ± 2.21, and 0.41 ± 0.48 µM, respectively, and compounds 1, 2, 10, 11, and 12 showed protective effects on glutamate-induced cell death with EC50 values of 5.54 ± 0.86, 34.03 ± 7.71, 19.71 ± 0.71, 16.50 ± 7.82, and 1.02 ± 0.13 µM, respectively.


Subject(s)
Flavonoids/pharmacology , Morus/chemistry , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Animals , Cell Death/drug effects , Cell Line , Flavonoids/isolation & purification , Glutamic Acid/toxicity , Hep G2 Cells , Humans , Mice , Neuroprotective Agents/isolation & purification , Plant Bark , Plant Roots , Spectrum Analysis , tert-Butylhydroperoxide/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...