Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 20(11): e2305758, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37936297

ABSTRACT

Recently, sulfide-based all-solid-state batteries (ASSBs) have attracted great attention because of their excellent safety and high energy density. However, by-products formed from side-reactions between the oxide-based cathodes and sulfide-based solid electrolytes (SEs) increase the interfacial resistance and degrade the cell performance. Suppression of this interfacial resistance is thus critical. In this study, the extraordinarily high stability of the cathode/SE interface is discovered when a Li10 SnP2 S12 (LSnPS) is applied to a cathode buffer layer. The electrochemical properties of the cathode interface at high potential are improved by synthesizing a core-shell structure cathode using LSnPS. The synthesized LSnPS is uniformly coated on a Li2 ZrO3 -coated LiNi0.8 Co0.1 Mn0.1 O2 (LZO-NCM) surface using the cost-efficient mechano-fusion method. The ASSB with LSnPS-coated LZO-NCM as the cathode and Li6 PS5 Cl (argyrodite, LPSCl) as the SE exhibited a capacity of 192 mAh g-1 and excellent cycle retention of ≈75% after 500 charge/discharge cycles. In addition, the degradation mechanism at the cathode/SE interface is investigated. The results indicated that LSnPS stabilizes the interface between NCM and argyrodite, thereby inhibiting the decomposition of the SE. This technology is expected to contribute to the commercialization of cathode materials for sulfide-based ASSBs due to its enhanced cycle performance, low-cost material application, and eco-friendly process.

2.
ACS Appl Mater Interfaces ; 13(11): 13200-13211, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33710866

ABSTRACT

The high theoretical energy densities of lithium-air batteries (LAB) make this technology an attractive energy storage system for future mobility applications. Li2O2 growth process on the cathode relies on the surrounding chemical environment of electrolytes. Low conductivity and strong reactivity of Li2O2 discharge products can cause overpotential and induce side reactions in LABs, respectively, eventually leading to poor cyclability. The capacity and reversibility of LABs are highly susceptible to the morphology of the Li2O2 discharge products. Here, we identify for the first time that a seed layer formed by the combination of a cathode and an electrolyte determines the morphology of Li2O2 discharge products. This seed layer led to its high reversibility with a large areal capacity (up to 10 mAh/cm2). Excellent OER (oxygen evolution reaction) was achieved by the formation of a favorable interface between the carbon electrode and electrolyte, minimizing the decomposition of the electrolyte. These remarkable improvements in LAB performance demonstrate critical progress toward advancing LAB into practical uses, which would exploit good reversibility of LABs in pouch-type cell arrangements with 1.34 Ah.

3.
Small ; 15(18): e1900235, 2019 May.
Article in English | MEDLINE | ID: mdl-30963717

ABSTRACT

All-solid-state batteries (ASSBs) have lately received enormous attention for electric vehicle applications because of their exceptional stability by engaging all-solidified cell components. However, there are many formidable hurdles such as low ionic conductivity, interface instability, and difficulty in the manufacturing process, for its practical use. Recently, carbon, one of the representative conducting agents, turns out to largely participate in side reactions with the solid electrolyte, which finally leads to the formation of insulating side products at the interface. Although the battery community mentioned that parasitic reactions are presumably attributed to carbon itself or the generation of electronic conducting paths lowering the kinetic barrier for reactions, the underlying origin for such reactions as well as appropriate solutions have not been provided yet. In this study, for the first time, it is verified that the functional group on carbon is an origin for causing negative effects on interfacial stability and a graphitized hollow nanocarbon as a promising solution for improving-electrochemical performance is introduced. This work offers an invaluable lesson that a relatively minor part, such as a conducting agent, in ASSBs sometimes gives more positive impact on improving electrochemical performance than huge efforts for resolving other parts.

SELECTION OF CITATIONS
SEARCH DETAIL
...