Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Res Commun ; 532(2): 251-257, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32868077

ABSTRACT

Since the first discovery of phenolic acid decarboxylase transcriptional regulator (PadR), its homologs have been identified mostly in bacterial species and constitute the PadR family. PadR family members commonly contain a winged helix-turn-helix (wHTH) motif and function as a transcription factor. However, the PadR family members are varied in terms of molecular size and structure. As a result, they are divided into PadR subfamily-1 and PadR subfamily-2. PadR subfamily-2 proteins have been reported in some pathogenic bacteria, including Listeria monocytogenes and Streptococcus pneumoniae, and implicated in drug resistance processes. Despite the growing numbers of known PadR family proteins and their critical functions in bacteria survival, biochemical and biophysical studies of the PadR subfamily-2 are limited. Here, we report the crystal structure of a PadR subfamily-2 member from Streptococcus pneumoniae (SpPadR) at a 2.40 Å resolution. SpPadR forms a dimer using its N-terminal and C-terminal helices. The two wHTH motifs of a SpPadR dimer expose their positively charged residues presumably to interact with DNA. Our structure-based mutational and biochemical study indicates that SpPadR specifically recognizes a palindromic nucleotide sequence upstream of its encoding region as a transcriptional regulator. Furthermore, comparative structural analysis of diverse PadR family members combined with a modeling study highlights the structural and regulatory features of SpPadR that are canonical to the PadR family or specific to the PadR subfamily-2.


Subject(s)
Bacterial Proteins/chemistry , Streptococcus pneumoniae/chemistry , Transcription Factors/chemistry , Amino Acid Sequence , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Conserved Sequence , Crystallography, X-Ray , DNA, Bacterial/metabolism , Fluorescence Polarization , Models, Molecular , Multigene Family , Mutation , Structural Homology, Protein , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism , Tyrosine/genetics , Tyrosine/metabolism
2.
Biochem Biophys Res Commun ; 528(1): 85-91, 2020 07 12.
Article in English | MEDLINE | ID: mdl-32451086

ABSTRACT

Pseudomonas aeruginosa is a widely found opportunistic pathogen. The emergence of multidrug-resistant strains and persistent chronic infections have increased. The protein encoded by the pa0423 gene in P. aeruginosa is proposed to be critical for pathogenesis and could be a virulence-promoting protease or a bacterial lipocalin that binds a lipid-like antibiotic for drug resistance. Although two functions of proteolysis and antibiotic resistance are mutually related to bacterial survival in the host, it is very unusual for a single-domain protein to target unrelated ligand molecules such as protein substrates and lipid-like antibiotics. To clearly address the biological role of the PA0423 protein, we performed structural and biochemical studies. We found that PA0423 adopts a single-domain ß-barrel structure and belongs to the lipocalin family. The PA0423 structure houses an internal tubular cavity, which accommodates a ubiquinone-8 molecule. Furthermore, we reveal that PA0423 can directly interact with the polymyxin B antibiotic using the internal cavity, suggesting that PA0423 has a physiological function in the antibiotic resistance of P. aeruginosa.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Pseudomonas aeruginosa/metabolism , Amino Acid Sequence , Crystallography, X-Ray , Hydrophobic and Hydrophilic Interactions , Ligands , Lipocalins/chemistry , Models, Molecular , Polymyxin B/chemistry , Polymyxin B/metabolism , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Solubility , Structural Homology, Protein , Ubiquinone/chemistry , Ubiquinone/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...