Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
IEEE Trans Pattern Anal Mach Intell ; 46(7): 4843-4849, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38265902

ABSTRACT

This paper studies a new curve-fitting approach to data on Riemannian manifolds. We define a principal curve based on a mixture model for observations and unobserved latent variables and propose a new algorithm to estimate the principal curve for given data points on Riemannian manifolds.

2.
J Classif ; : 1-25, 2023 Jun 12.
Article in English | MEDLINE | ID: mdl-37359508

ABSTRACT

This study develops a new clustering method for high-dimensional zero-inflated time series data. The proposed method is based on thick-pen transform (TPT), in which the basic idea is to draw along the data with a pen of a given thickness. Since TPT is a multi-scale visualization technique, it provides some information on the temporal tendency of neighborhood values. We introduce a modified TPT, termed 'ensemble TPT (e-TPT)', to enhance the temporal resolution of zero-inflated time series data that is crucial for clustering them efficiently. Furthermore, this study defines a modified similarity measure for zero-inflated time series data considering e-TPT and proposes an efficient iterative clustering algorithm suitable for the proposed measure. Finally, the effectiveness of the proposed method is demonstrated by simulation experiments and two real datasets: step count data and newly confirmed COVID-19 case data.

3.
Article in English | MEDLINE | ID: mdl-37022427

ABSTRACT

Image inpainting methods leverage the similarity of adjacent pixels to create alternative content. However, as the invisible region becomes larger, the pixels completed in the deeper hole are difficult to infer from the surrounding pixel signal, which is more prone to visual artifacts. To help fill this void, we adopt an alternative progressive hole-filling scheme that hierarchically fills the corrupted region in the feature and image spaces. This technique allows us to utilize reliable contextual information of the surrounding pixels, even for large hole samples, and then gradually complete the details as the resolution increases. For a more realistic representation of the completed region, we devise a pixel-wise dense detector. By distinguishing each pixel as whether it is a masked region or not, and passing the gradient to all resolutions, the generator further enhances the potential quality of the compositing. Furthermore, the completed images at different resolutions are then merged using a proposed structure transfer module (STM) that incorporates fine-grained local and coarse-grained global interactions. In this new mechanism, each completed image at the different resolutions attends its closest composition at fine granularity adjacent image and thus can capture the global continuity by interacting both short- and long-range dependencies. By comparing our solutions qualitatively and quantitatively with state-of-the-art methods, we conclude that our model exhibits a significantly improved visual quality, even in the case of large holes.

4.
Article in English | MEDLINE | ID: mdl-36374893

ABSTRACT

Single-image 3-D reconstruction has long been a challenging problem. Recent deep learning approaches have been introduced to this 3-D area, but the ability to generate point clouds still remains limited due to inefficient and expensive 3-D representations, the dependency between the output and the number of model parameters, or the lack of a suitable computing operation. In this article, we present a novel deep-learning-based method to reconstruct a point cloud of an object from a single still image. The proposed method can be decomposed into two steps: feature fusion and deformation. The first step extracts both global and point-specific shape features from a 2-D object image, and then injects them into a randomly generated point cloud. In the second step, which is deformation, we introduce a new layer termed as GraphX that considers the interrelationship between points like common graph convolutions but operates on unordered sets. The framework can be applicable to realistic image data with background as we optionally learn a mask branch to segment objects from input images. To complement the quality of point clouds, we further propose an objective function to control the point uniformity. In addition, we introduce different variants of GraphX that cover from best performance to best memory budget. Moreover, the proposed model can generate an arbitrary-sized point cloud, which is the first deep method to do so. Extensive experiments demonstrate that we outperform the existing models and set a new height for different performance metrics in single-image 3-D reconstruction.

5.
Sensors (Basel) ; 22(4)2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35214216

ABSTRACT

Virtual reality (VR) experiences often elicit a negative effect, cybersickness, which results in nausea, disorientation, and visual discomfort. To quantitatively analyze the degree of cybersickness depending on various attributes of VR content (i.e., camera movement, field of view, path length, frame reference, and controllability), we generated cybersickness reference (CYRE) content with 52 VR scenes that represent different content attributes. A protocol for cybersickness evaluation was designed to collect subjective opinions from 154 participants as reliably as possible in conjunction with objective data such as rendered VR scenes and biological signals. By investigating the data obtained through the experiment, the statistically significant relationships-the degree that the cybersickness varies with each isolated content factor-are separately identified. We showed that the cybersickness severity was highly correlated with six biological features reflecting brain activities (i.e., relative power spectral densities of Fp1 delta, Fp 1 beta, Fp2 delta, Fp2 gamma, T4 delta, and T4 beta waves) with a coefficient of determination greater than 0.9. Moreover, our experimental results show that individual characteristics (age and susceptibility) are also quantitatively associated with cybersickness level. Notably, the constructed dataset contains a number of labels (i.e., subjective cybersickness scores) that correspond to each VR scene. We used these labels to build cybersickness prediction models and obtain a reliable predictive performance. Hence, the proposed dataset is supposed to be widely applicable in general-purpose scenarios regarding cybersickness quantification.


Subject(s)
Motion Sickness , Virtual Reality , Humans , Movement
6.
IEEE Trans Neural Netw Learn Syst ; 33(2): 554-566, 2022 02.
Article in English | MEDLINE | ID: mdl-33079678

ABSTRACT

In a virtual reality (VR) environment, where visual stimuli predominate over other stimuli, the user experiences cybersickness because the balance of the body collapses due to self-motion. Accordingly, the VR experience is accompanied by unavoidable sickness referred to as visually induced motion sickness (VIMS). In this article, our primary purpose is to simultaneously estimate the VIMS score by referring to the content and calculate the temporally induced VIMS sensitivity. To seek our goals, we propose a novel architecture composed of two consecutive networks: 1) neurological representation and 2) spatiotemporal representation. In the first stage, the network imitates and learns the neurological mechanism of motion sickness. In the second stage, the significant feature of the spatial and temporal domains is expressed over the generated frames. After the training procedure, our model can calculate VIMS sensitivity for each frame of the VR content by using the weakly supervised approach for unannotated temporal VIMS scores. Furthermore, we release a massive VR content database. In the experiments, the proposed framework demonstrates excellent performance for VIMS score prediction compared with existing methods, including feature engineering and deep learning-based approaches. Furthermore, we propose a way to visualize the cognitive response to visual stimuli and demonstrate that the induced sickness tends to be activated in a similar tendency, as done in clinical studies.


Subject(s)
Motion Sickness , Virtual Reality , Humans , Motion Sickness/etiology , Motion Sickness/psychology , Neural Networks, Computer
7.
IEEE Trans Pattern Anal Mach Intell ; 43(6): 2165-2171, 2021 Jun.
Article in English | MEDLINE | ID: mdl-32956037

ABSTRACT

This paper presents a new approach for dimension reduction of data observed on spherical surfaces. Several dimension reduction techniques have been developed in recent years for non-euclidean data analysis. As a pioneer work, (Hauberg 2016) attempted to implement principal curves on Riemannian manifolds. However, this approach uses approximations to process data on Riemannian manifolds, resulting in distorted results. This study proposes a new approach to project data onto a continuous curve to construct principal curves on spherical surfaces. Our approach lies in the same line of (Hastie and Stuetzle et al. 1989) that proposed principal curves for data on euclidean space. We further investigate the stationarity of the proposed principal curves that satisfy the self-consistency on spherical surfaces. The results on the real data analysis and simulation examples show promising empirical characteristics of the proposed approach.

8.
Biometrics ; 77(1): 293-304, 2021 03.
Article in English | MEDLINE | ID: mdl-32150282

ABSTRACT

This paper considers the clustering problem of physical step count data recorded on wearable devices. Clustering step data give an insight into an individual's activity status and further provide the groundwork for health-related policies. However, classical methods, such as K-means clustering and hierarchical clustering, are not suitable for step count data that are typically high-dimensional and zero-inflated. This paper presents a new clustering method for step data based on a novel combination of ensemble clustering and binning. We first construct multiple sets of binned data by changing the size and starting position of the bin, and then merge the clustering results from the binned data using a voting method. The advantage of binning, as a critical component, is that it substantially reduces the dimension of the original data while preserving the essential characteristics of the data. As a result, combining clustering results from multiple binned data can provide an improved clustering result that reflects both local and global structures of the data. Simulation studies and real data analysis were carried out to evaluate the empirical performance of the proposed method and demonstrate its general utility.


Subject(s)
Algorithms , Cluster Analysis , Computer Simulation
9.
Stat Methods Med Res ; 29(11): 3205-3217, 2020 11.
Article in English | MEDLINE | ID: mdl-32368950

ABSTRACT

This paper presents a new model-based generalized functional clustering method for discrete longitudinal data, such as multivariate binomial and Poisson distributed data. For this purpose, we propose a multivariate functional principal component analysis (MFPCA)-based clustering procedure for a latent multivariate Gaussian process instead of the original functional data directly. The main contribution of this study is two-fold: modeling of discrete longitudinal data with the latent multivariate Gaussian process and developing of a clustering algorithm based on MFPCA coupled with the latent multivariate Gaussian process. Numerical experiments, including real data analysis and a simulation study, demonstrate the promising empirical properties of the proposed approach.


Subject(s)
Algorithms , Cluster Analysis , Computer Simulation , Multivariate Analysis , Normal Distribution
10.
J Appl Stat ; 47(11): 1957-1969, 2020.
Article in English | MEDLINE | ID: mdl-35707571

ABSTRACT

Dynamic principal component analysis (DPCA), also known as frequency domain principal component analysis, has been developed by Brillinger [Time Series: Data Analysis and Theory, Vol. 36, SIAM, 1981] to decompose multivariate time-series data into a few principal component series. A primary advantage of DPCA is its capability of extracting essential components from the data by reflecting the serial dependence of them. It is also used to estimate the common component in a dynamic factor model, which is frequently used in econometrics. However, its beneficial property cannot be utilized when missing values are present, which should not be simply ignored when estimating the spectral density matrix in the DPCA procedure. Based on a novel combination of conventional DPCA and self-consistency concept, we propose a DPCA method when missing values are present. We demonstrate the advantage of the proposed method over some existing imputation methods through the Monte Carlo experiments and real data analysis.

11.
Article in English | MEDLINE | ID: mdl-30403631

ABSTRACT

Visual saliency on stereoscopic 3D (S3D) images has been shown to be heavily influenced by image quality. Hence, this dependency is an important factor in image quality prediction, image restoration and discomfort reduction, but it is still very difficult to predict such a nonlinear relation in images. In addition, most algorithms specialized in detecting visual saliency on pristine images may unsurprisingly fail when facing distorted images. In this paper, we investigate a deep learning scheme named Deep Visual Saliency (DeepVS) to achieve a more accurate and reliable saliency predictor even in the presence of distortions. Since visual saliency is influenced by low-level features (contrast, luminance and depth information) from a psychophysical point of view, we propose seven low-level features derived from S3D image pairs and utilize them in the context of deep learning to detect visual attention adaptively to human perception. During analysis, it turns out that the low-level features play a role to extract distortion and saliency information. To construct saliency predictors, we weight and model the human visual saliency through two different network architectures, a regression and a fully convolutional neural networks (CNNs). Our results from thorough experiments confirm that the predicted saliency maps are up to 70 % correlated with human gaze patterns, which emphasize the need for the hand-crafted features as input to deep neural networks in S3D saliency detection.

12.
Article in English | MEDLINE | ID: mdl-29994709

ABSTRACT

Most prior approaches to the problem of stereoscopic 3D (S3D) visual discomfort prediction (VDP) have focused on the extraction of perceptually meaningful handcrafted features based on models of visual perception and of natural depth statistics. Towards advancing performance on this problem, we have developed a deep learning based VDP model named Deep Visual Discomfort Predictor (DeepVDP). DeepVDP uses a convolutional neural network (CNN) to learn features that are highly predictive of experienced visual discomfort. Since a large amount of reference data is needed to train a CNN, we develop a systematic way of dividing S3D image into local regions defined as patches, and model a patch-based CNN using two sequential training steps. Since it is very difficult to obtain human opinions on each patch, instead a proxy ground-truth label that is generated by an existing S3D visual discomfort prediction algorithm called 3D-VDP is assigned to each patch. These proxy ground-truth labels are used to conduct the first stage of training the CNN. In the second stage, the automatically learned local abstractions are aggregated into global features via a feature aggregation layer. The learned features are iteratively updated via supervised learning on subjective 3D discomfort scores, which serve as ground-truth labels on each S3D image. The patchbased CNN model that has been pretrained on proxy groundtruth labels is subsequently retrained on true global subjective scores. The global S3D visual discomfort scores predicted by the trained DeepVDP model achieve state-of-the-art performance as compared to previous VDP algorithms.

13.
IEEE Trans Image Process ; 26(8): 3789-3801, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28499997

ABSTRACT

Conventional stereoscopic 3D (S3D) displays do not provide accommodation depth cues of the 3D image or video contents being viewed. The sense of content depths is thus limited to cues supplied by motion parallax (for 3D video), stereoscopic vergence cues created by presenting left and right views to the respective eyes, and other contextual and perspective depth cues. The absence of accommodation cues can induce two kinds of accommodation vergence mismatches (AVM) at the fixation and peripheral points, which can result in severe visual discomfort. With the aim of alleviating discomfort arising from AVM, we propose a new visual comfort enhancement approach for processing S3D visual signals to deliver a more comfortable 3D viewing experience at the display. This is accomplished via an optimization process whereby a predictive indicator of visual discomfort is minimized, while still aiming to maintain the viewer's sense of 3D presence by performing a suitable parallax shift, and by directed blurring of the signal. Our processing framework is defined on 3D visual coordinates that reflect the nonuniform resolution of retinal sensors and that uses a measure of 3D saliency strength. An appropriate level of blur that corresponds to the degree of parallax shift is found, making it possible to produce synthetic accommodation cues implemented using a perceptively relevant filter. By this method, AVM, the primary contributor to the discomfort felt when viewing S3D images, is reduced. We show via a series of subjective experiments that the proposed approach improves visual comfort while preserving the sense of 3D presence.

14.
Springerplus ; 5(1): 2016, 2016.
Article in English | MEDLINE | ID: mdl-27942428

ABSTRACT

This paper considers an improvement of empirical mode decomposition (EMD) in the presence of missing data. EMD has been widely used to decompose nonlinear and nonstationary signals into some components according to intrinsic frequency called intrinsic mode functions. However, the conventional EMD may not be efficient when missing values are present. This paper proposes a modified EMD procedure based on a novel combination of empirical mode decomposition and self-consistency concept. The self-consistency provides an effective imputation method of missing data, and hence, the proposed EMD procedure produces stable decomposition results. Simulation studies and the image analysis demonstrate that the proposed method produces substantially effective results.

15.
IEEE Trans Image Process ; 25(2): 615-29, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26672036

ABSTRACT

The human visual system perceives 3D depth following sensing via its binocular optical system, a series of massively parallel processing units, and a feedback system that controls the mechanical dynamics of eye movements and the crystalline lens. The process of accommodation (focusing of the crystalline lens) and binocular vergence is controlled simultaneously and symbiotically via cross-coupled communication between the two critical depth computation modalities. The output responses of these two subsystems, which are induced by oculomotor control, are used in the computation of a clear and stable cyclopean 3D image from the input stimuli. These subsystems operate in smooth synchronicity when one is viewing the natural world; however, conflicting responses can occur when viewing stereoscopic 3D (S3D) content on fixed displays, causing physiological discomfort. If such occurrences could be predicted, then they might also be avoided (by modifying the acquisition process) or ameliorated (by changing the relative scene depth). Toward this end, we have developed a dynamic accommodation and vergence interaction (DAVI) model that successfully predicts visual discomfort on S3D images. The DAVI model is based on the phasic and reflex responses of the fast fusional vergence mechanism. Quantitative models of accommodation and vergence mismatches are used to conduct visual discomfort prediction. Other 3D perceptual elements are included in the proposed method, including sharpness limits imposed by the depth of focus and fusion limits implied by Panum's fusional area. The DAVI predictor is created by training a support vector machine on features derived from the proposed model and on recorded subjective assessment results. The experimental results are shown to produce accurate predictions of experienced visual discomfort.


Subject(s)
Depth Perception/physiology , Eye Movements/physiology , Imaging, Three-Dimensional/methods , Adult , Humans , Models, Biological , Models, Statistical , Young Adult
16.
Asian-Australas J Anim Sci ; 28(6): 771-81, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25925054

ABSTRACT

Thoroughbred, a relatively recent horse breed, is best known for its use in horse racing. Although myostatin (MSTN) variants have been reported to be highly associated with horse racing performance, the trait is more likely to be polygenic in nature. The purpose of this study was to identify genetic variants strongly associated with racing performance by using estimated breeding value (EBV) for race time as a phenotype. We conducted a two-stage genome-wide association study to search for genetic variants associated with the EBV. In the first stage of genome-wide association study, a relatively large number of markers (~54,000 single-nucleotide polymorphisms, SNPs) were evaluated in a small number of samples (240 horses). In the second stage, a relatively small number of markers identified to have large effects (170 SNPs) were evaluated in a much larger number of samples (1,156 horses). We also validated the SNPs related to MSTN known to have large effects on racing performance and found significant associations in the stage two analysis, but not in stage one. We identified 28 significant SNPs related to 17 genes. Among these, six genes have a function related to myogenesis and five genes are involved in muscle maintenance. To our knowledge, these genes are newly reported for the genetic association with racing performance of Thoroughbreds. It complements a recent horse genome-wide association studies of racing performance that identified other SNPs and genes as the most significant variants. These results will help to expand our knowledge of the polygenic nature of racing performance in Thoroughbreds.

17.
IEEE Trans Image Process ; 24(3): 1101-14, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25532185

ABSTRACT

Being able to predict the degree of visual discomfort that is felt when viewing stereoscopic 3D (S3D) images is an important goal toward ameliorating causative factors, such as excessive horizontal disparity, misalignments or mismatches between the left and right views of stereo pairs, or conflicts between different depth cues. Ideally, such a model should account for such factors as capture and viewing geometries, the distribution of disparities, and the responses of visual neurons. When viewing modern 3D displays, visual discomfort is caused primarily by changes in binocular vergence while accommodation in held fixed at the viewing distance to a flat 3D screen. This results in unnatural mismatches between ocular fixations and ocular focus that does not occur in normal direct 3D viewing. This accommodation vergence conflict can cause adverse effects, such as headaches, fatigue, eye strain, and reduced visual ability. Binocular vision is ultimately realized by means of neural mechanisms that subserve the sensorimotor control of eye movements. Realizing that the neuronal responses are directly implicated in both the control and experience of 3D perception, we have developed a model-based neuronal and statistical framework called the 3D visual discomfort predictor (3D-VDP)that automatically predicts the level of visual discomfort that is experienced when viewing S3D images. 3D-VDP extracts two types of features: 1) coarse features derived from the statistics of binocular disparities and 2) fine features derived by estimating the neural activity associated with the processing of horizontal disparities. In particular, we deploy a model of horizontal disparity processing in the extrastriate middle temporal region of occipital lobe. We compare the performance of 3D-VDP with other recent discomfort prediction algorithms with respect to correlation against recorded subjective visual discomfort scores,and show that 3D-VDP is statistically superior to the other methods.


Subject(s)
Imaging, Three-Dimensional/adverse effects , Models, Neurological , Photic Stimulation/adverse effects , Vision Disorders/physiopathology , Visual Perception/physiology , Adult , Brain/physiology , Humans , Young Adult
18.
Asian-Australas J Anim Sci ; 27(12): 1678-83, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25358359

ABSTRACT

This study considers a problem of genomic selection (GS) for adjacent genetic markers of Yorkshire pigs which are typically correlated. The GS has been widely used to efficiently estimate target variables such as molecular breeding values using markers across the entire genome. Recently, GS has been applied to animals as well as plants, especially to pigs. For efficient selection of variables with specific traits in pig breeding, it is required that any such variable selection retains some properties: i) it produces a simple model by identifying insignificant variables; ii) it improves the accuracy of the prediction of future data; and iii) it is feasible to handle high-dimensional data in which the number of variables is larger than the number of observations. In this paper, we applied several variable selection methods including least absolute shrinkage and selection operator (LASSO), fused LASSO and elastic net to data with 47K single nucleotide polymorphisms and litter size for 519 observed sows. Based on experiments, we observed that the fused LASSO outperforms other approaches.

19.
Magn Reson Imaging ; 32(3): 270-80, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24332887

ABSTRACT

Compressive sensing (CS) enables the reconstruction of a magnetic resonance (MR) image from undersampled data in k-space with relatively low-quality distortion when compared to the original image. In addition, CS allows the scan time to be significantly reduced. Along with a reduction in the computational overhead, we investigate an effective way to improve visual quality through the use of a weighted optimization algorithm for reconstruction after variable density random undersampling in the phase encoding direction over k-space. In contrast to conventional magnetic resonance imaging (MRI) reconstruction methods, the visual weight, in particular, the region of interest (ROI), is investigated here for quality improvement. In addition, we employ a wavelet transform to analyze the reconstructed image in the space domain and fully utilize data sparsity over the spatial and frequency domains. The visual weight is constructed by reflecting the perceptual characteristics of the human visual system (HVS), and then applied to ℓ1 norm minimization, which gives priority to each coefficient during the reconstruction process. Using objective quality assessment metrics, it was found that an image reconstructed using the visual weight has higher local and global quality than those processed by conventional methods.


Subject(s)
Artificial Intelligence , Biomimetics/methods , Brain/anatomy & histology , Data Compression/methods , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Pattern Recognition, Automated/methods , Algorithms , Humans , Image Enhancement/methods , Magnetic Resonance Imaging/instrumentation , Phantoms, Imaging , Reproducibility of Results , Sensitivity and Specificity , Visual Perception , Wavelet Analysis
20.
BMB Rep ; 46(6): 310-5, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23790974

ABSTRACT

The gene order on the X chromosome of eutherians is generally highly conserved, although an increase in the rate of rearrangement has been reported in the rodent lineage. Conservation of the X chromosome is thought to be caused by selection related to maintenance of dosage compensation. However, we herein reveal that the cattle (Btau4.0) lineage has experienced a strong increase in the rate of X-chromosome rearrangement, much stronger than that previously reported for rodents. We also show that this increase is not matched by a similar increase on the autosomes and cannot be explained by assembly errors. Furthermore, we compared the difference in two cattle genome assemblies: Btau4.0 and Btau6.0 (Bos taurus UMD3.1). The results showed a discrepancy between Btau4.0 and Btau6.0 cattle assembly version data, and we believe that Btau6.0 cattle assembly version data are not more reliable than Btau4.0.


Subject(s)
Biological Evolution , X Chromosome , Animals , Cattle , Chromosome Mapping/veterinary , Genetic Linkage , Genome , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...