Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(9)2023 Apr 30.
Article in English | MEDLINE | ID: mdl-37177610

ABSTRACT

For indoor localisation, a challenge in data-driven localisation is to ensure sufficient data to train the prediction model to produce a good accuracy. However, for WiFi-based data collection, human effort is still required to capture a large amount of data as the representation Received Signal Strength (RSS) could easily be affected by obstacles and other factors. In this paper, we propose an extendGAN+ pipeline that leverages up-sampling with the Dirichlet distribution to improve location prediction accuracy with small sample sizes, applies transferred WGAN-GP for synthetic data generation, and ensures data quality with a filtering module. The results highlight the effectiveness of the proposed data augmentation method not only by localisation performance but also showcase the variety of RSS patterns it could produce. Benchmarking against the baseline methods such as fingerprint, random forest, and its base dataset with localisation models, extendGAN+ shows improvements of up to 23.47%, 25.35%, and 18.88% respectively. Furthermore, compared to existing GAN+ methods, it reduces training time by a factor of four due to transfer learning and improves performance by 10.13%.

2.
IEEE J Biomed Health Inform ; 22(5): 1421-1433, 2018 09.
Article in English | MEDLINE | ID: mdl-29990245

ABSTRACT

Availability and all-in-one functionality of smartphones have become a multipurpose personal tool to improve our daily life. Recent advancements in hardware and accessibility of smartphones have spawn huge potential for assistive healthcare, in particular telerehabilitation. However, using smartphone sensors face certain challenges, in particular, accurate orientation estimation, which is usually less of a problem in specialized motion tracking sensor devices. Drift is one of the challenges. We first propose a simple feedback loop complementary filter (CFF) to reduce the error caused by the integration of the gyroscope's data in the orientation estimation. Next, we propose a new and better orientation estimation algorithm which combines quaternion-based kalman filter with corrector estimates using gradient descent (KFGD). We then evaluate CFF's and KFGD's performance on two early-stage rehabilitation exercises. The results show that CFF is capable of fast motion tracking and confirm that the feedback loop can correct the error caused by the integration of gyroscope data. The KFGD orientation estimation is comparable to XSENS Awinda and has shown itself to be stable than and outperforms CFF. KFGD also outperforms the prominent Madgwick algorithm using mobile data. Thus, KFGD is suitable for low-cost motion sensors or mobile inertial sensors, especially during early recovery stage of sport injuries and exercise for the elderly.


Subject(s)
Accelerometry/instrumentation , Algorithms , Signal Processing, Computer-Assisted/instrumentation , Smartphone , Humans , Movement/physiology , Rehabilitation/instrumentation , Self-Help Devices , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...