Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Andrology ; 10(2): 340-353, 2022 02.
Article in English | MEDLINE | ID: mdl-34499811

ABSTRACT

BACKGROUND: Cryopreservation can expand the usefulness of spermatogonial stem cells (SSCs) in various fields. However, previous investigations that have attempted to modulate cryoinjury-induced mechanisms to increase cryoprotective efficiency have mainly focused on apoptosis and necrosis. OBJECTIVES: This study aimed to establish an effective molecular-based cryoprotectant for SSC cryopreservation via autophagy modulation. MATERIALS AND METHODS: To determine the efficacy of autophagy modulation, we assessed the recovery rate and relative proliferation rate and performed western blotting for the determination of autophagy flux, immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization, and spermatogonial transplantation for in vivo SSC functional activity. RESULTS: The results showed that a basal level of autophagy caused a higher relative proliferation rate (pifithrin-µ 0.01 µM, 184.2 ± 11.2%; 3-methyladenine 0.01 µM, 175.3 ± 10.3%; pifithrin-µ 0.01 µM + 3-methyladenine 0.01 µM, P3, 224.6 ± 22.3%) than the DMSO control (100 ± 6.2%). All treatment groups exhibited normal characteristics, suggesting that these modulators could be used as effective cryoprotectants without changing the properties of the undifferentiated germ cells. According to the results of the in vivo spermatogonial transplantation assay, the colonies per total number of cultured SSCs was significantly higher in the pifithrin-µ 0.01 µM (1596.7 ± 172.5 colonies), 3-methyladenine 0.01 µM (1522.1 ± 179.2 colonies), and P3 (1727.5 ± 196.5 colonies) treatment groups than in the DMSO control (842.8 ± 110.08 colonies), which was comparable to that of the fresh control (1882.1 ± 132.1 colonies). DISCUSSION: A basal level of autophagy is more essential for resilience in frozen SSCs after thawing, rather than the excessive activation or inhibition of autophagy. CONCLUSION: A basal level of autophagy plays a critical role in the pro-survival response of frozen SSCs after thawing; herein, a new approach by which SSC cryoprotective efficiency can be improved was identified.


Subject(s)
Adult Germline Stem Cells/drug effects , Autophagy/drug effects , Cryopreservation , Cryoprotective Agents/pharmacology , Spermatogonia/cytology , Animals , Male , Mice
2.
Antioxidants (Basel) ; 10(5)2021 May 10.
Article in English | MEDLINE | ID: mdl-34068575

ABSTRACT

We postulated that supplementation of antioxidant or apoptosis inhibitor in post-thaw culture media of spermatogonial stem cells (SSCs) alleviates reactive oxygen species (ROS) generation and apoptosis. Our aim was to develop an effective culture media for improving post-thaw recovery of SSCs. To determine the efficacy of supplementation with hypotaurine (HTU), α-tocopherol (α-TCP), and Z-DEVD-FMK (ZDF), we assessed the relative proliferation rate and SSC functional activity and performed a ROS generation assay, apoptosis assay, and western blotting for determination of the Bax/Bcl-xL ratio, as well as immunocytochemistry and real-time quantitative polymerase chain reaction (RT-qPCR) for SSC characterization. The relative proliferation rates with HTU 400 µM (133.7 ± 3.2%), α-TCP 400 µM (158.9 ± 3.6%), and ZDF 200 µM (133.1 ± 7.6%) supplementation were higher than that in the DMSO control (100 ± 3.6%). ROS generation was reduced with α-TCP 400 µM (0.8-fold) supplementation in comparison with the control (1.0-fold). Early apoptosis and Bax/Bcl-xL were lower with α-TCP 400 µM (2.4 ± 0.4% and 0.5-fold) and ZDF 200 µM (1.8 ± 0.4% and 0.3-fold) supplementation in comparison with the control (5.3 ± 1.4% and 1.0-fold) with normal characterization and functional activity. Supplementation of post-thaw culture media with α-TCP 400 µM and ZDF 200 µM improved post-thaw recovery of frozen SSCs via protection from ROS generation and apoptosis after cryo-thawing.

3.
Theriogenology ; 158: 445-453, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33049569

ABSTRACT

Cryopreservation of spermatogonial stem cells (SSCs) is important to preserve the lineages of valuable livestock and produce transgenic animals. Although interest in molecular-based cryopreservation methods have been increasing to improve their efficiency, the issue of necroptosis has not yet been considered. Therefore, the purpose of this study was to understand the role of necroptosis using necrostatin-1 (Nec-1), necroptosis inhibitor, in SSC cryopreservation, and to investigate the potential application of Nec-1 as a cryoprotectant. To determine the cryopreservation efficiency of Nec-1, we assessed recovery rate, proliferation potential, cellular membrane damage, RIP1 protein expression, apoptosis, and its mechanism. Stable characterization and functional activity of SSCs was determined via immunofluorescence, RT-qPCR, and in vivo transplantation of SSCs. Our results showed a higher proliferation potential in 50 µM Nec-1 (146.5 ± 16.8%) than in DMSO controls (100.0 ± 3.4%). Furthermore, the cryoprotective effects of Nec-1 were verified by a decrease in RIP1 expression (3.1 ± 0.2-fold vs. 1.3 ± 0.3-fold) and in early apoptosis (4.3 ± 0.8% vs. 2.6 ± 0.1%) compared to DMSO controls. Normal functional activity was observed in the SSCs after cryopreservation with 50 µM Nec-1. In conclusion, necroptosis could be a cause of cryoinjury, and their inhibitor may serve as potential effective cryoprotectant. This study will contribute to establish a molecular-based cryopreservation method, and thereby expanding the use of SSCs into the domestic livestock industry as well as for clinical applications.


Subject(s)
Adult Germline Stem Cells , Necroptosis , Animals , Apoptosis , Cryopreservation/veterinary , Imidazoles , Indoles , Male , Mice , Spermatogonia
SELECTION OF CITATIONS
SEARCH DETAIL
...