Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 11(15)2022 07 29.
Article in English | MEDLINE | ID: mdl-35954179

ABSTRACT

Isolating a large quantity of high-quality human islets is a prerequisite for diabetes research. Human islets are typically isolated from the pancreases of brain-dead donors, making research difficult due to low availability. Pancreas tissue discarded after surgical resection may be a good alternative source of islet cells. To test this hypothesis, we isolated islets from discarded surgical specimens and evaluated the islet yield and quality as well as islet cell preparations. Eighty-two segmental pancreases were processed using the Ricordi automated method, and islet yield and quality were investigated. The mean age of patients was 54.6, and the cohort included 32 diabetes patients. After purification, partially resected pancreases yielded an average of 59,593 ± 56,651 islet equivalents (IEQs) and 2546 IEQ/g of digested pancreas, with 71.5 ± 21% purity. Multivariate analysis revealed that diabetes (p = 0.0046) and the lobe used (p = 0.0156) significantly altered islet yield. Islets transplanted into diabetic mice displayed good viability and in vitro glucose responses, DNA/RNA quality, mitochondrial function, and glucose control, even though these results were dependent on islet quality. Isolated cells also maintained high viability and function even after cryopreservation. Our findings indicate that pancreatic tissue discarded after surgery can be a valuable source of islets for diabetes research.


Subject(s)
Diabetes Mellitus, Experimental , Islets of Langerhans Transplantation , Islets of Langerhans , Animals , Humans , Islets of Langerhans Transplantation/methods , Mice , Pancreas , Tissue Donors
2.
BMB Rep ; 55(9): 453-458, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35651332

ABSTRACT

Diabetes mellitus (DM) is a serious disease in which blood sugar levels rise abnormally because of failed insulin production or decreased insulin sensitivity. Although many studies are being conducted for the treatment or early diagnosis of DM, it is not fully understood how mitochondrial genome (mtDNA) abnormalities appear in patients with DM. Here, we induced iPSCs from fibroblasts, PBMCs, or pancreatic cells of three patients with type 2 DM (T2D) and three patients with non-diabetes counterpart. The mtDNA mutations were detected randomly without any tendency among tissues or patients. In T2D patients, 62% (21/34) of iPSC clones harbored multiple mtDNA mutations, of which 37% were homoplasmy at the 100% mutation level compared to only 8% in non-diabetes. We next selected iPSC clones that were a wild type or carried mutations and differentiated into pancreatic cells. Oxygen consumption rates were significantly lower in cells carrying mutant mtDNA. Additionally, the mutant cells exhibited decreased production of insulin and reduced secretion of insulin in response to glucose. Overall, the results suggest that screening mtDNA mutations in iPSCs from patients with T2D is an essential step before pancreatic cell differentiation for disease modeling or autologous cell therapy. [BMB Reports 2022; 55(9): 453-458].


Subject(s)
Diabetes Mellitus, Type 2 , Induced Pluripotent Stem Cells , Blood Glucose , Cell Differentiation/genetics , DNA, Mitochondrial/genetics , Diabetes Mellitus, Type 2/genetics , Humans , Insulin , Mutation/genetics
3.
Article in English | MEDLINE | ID: mdl-32565421

ABSTRACT

OBJECTIVE: Esterified collagen (EC) can be functionalized with heparin to enhance islet graft stability. Growth factors secreted by human adipose-derived stem cells (hADSCs) can bind efficiently to EC-heparin (EC-Hep), which enhances revascularization and cell protection. We investigated the therapeutic potential of a combined heparin-esterified collagen-hADSC (HCA)-islet sheet to enhance islet engraftment. RESEARCH DESIGN AND METHODS: This study was designed to assess the efficiency of using EC-Hep as a scaffold for subcutaneous islet transplantation in diabetic athymic mice. After the hADSC-cocultured islets were seeded in the EC-Hep scaffold, islet function was measured by glucose-stimulated insulin secretion test and growth factors in the culture supernatants were detected by protein array. Islet transplantation was performed in mice, and graft function and survival were monitored by measuring the blood glucose levels. ß-Cell mass and vascular densities were assessed by immunohistochemistry. RESULTS: The EC-Hep composite allowed sustained release of growth factors. Secretion of growth factors and islet functionality in the HCA-islet sheet were significantly increased compared with the control groups of islets alone or combined with native collagen. In vivo, stable long-term glucose control by the graft was achieved after subcutaneous transplantation of HCA-islet sheet due to enhanced capillary network formation around the sheet. CONCLUSIONS: The findings indicate the potential of the HCA-islet sheet to enhance islet revascularization and engraftment in a hADSC dose-dependent manner, following clinical islet transplantation for the treatment of diabetes mellitus.


Subject(s)
Diabetes Mellitus, Experimental , Insulin-Secreting Cells , Animals , Collagen , Diabetes Mellitus, Experimental/therapy , Heparin , Mice , Stem Cells
4.
Xenotransplantation ; 26(1): e12451, 2019 01.
Article in English | MEDLINE | ID: mdl-30252163

ABSTRACT

BACKGROUND: Genetic reprogramming is a powerful method for altering cell properties and inducing differentiation. However, even if the same gene is reprogrammed, the results vary among cells. Therefore, a better possible strategy involves treating cells with factors that further stimulate differentiation while using stem cells with the same tissue origin. This study aimed to increase induction efficiency and insulin production in reprogrammed cells using a combination of factors that promote cell differentiation. METHODS: Porcine pancreatic cells were cultured to obtain mesenchymal stem cells expressing pancreatic cell-specific markers through sequential passages. The characteristics of these cells were identified, and the M3 gene (Pdx1, Ngn3, MafA) was reprogrammed to induce differentiation into insulin-producing cells. Additionally, the differentiation efficiency of insulin-producing cells was compared by treating reprogrammed cells with a differentiation-promoting factor. RESULTS: Mesenchymal stem cells isolated from porcine pancreatic tissues expressed exocrine cell markers, including amylase and cytokeratin 18, and most cells continuously expressed the beta cell transcription factors Ngn3 and NeuroD. Reprogramming of the M3 gene resulted in differentiation into insulin-producing cells. Moreover, significantly increased insulin and glucagon expressions were observed in the suitable induction medium, and the characteristic beta cell transcription factors Pdx1, Ngn3, and MafA were expressed at levels as high as those in pancreatic islet cells. CONCLUSIONS: Differentiation into insulin-producing cells represents an alternative therapy for insufficient pancreatic islet cells when treating diabetes. Therefore, cells with the characteristics of the target cell should be used to improve differentiation efficiency by creating an environment that promotes reprogramming and differentiation.


Subject(s)
Culture Media , Insulin-Secreting Cells/cytology , Insulin/metabolism , Mesenchymal Stem Cells/cytology , Transplantation, Heterologous , Animals , Cell Differentiation/genetics , Cells, Cultured , Glucagon/metabolism , Humans , Pancreas/metabolism , Swine , Transplantation, Heterologous/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...