Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Biochem Behav ; 153: 116-129, 2017 02.
Article in English | MEDLINE | ID: mdl-28024908

ABSTRACT

Clinical and experimental studies suggest that voltage-gated sodium channels (VGSCs) play a key role in the pathogenesis of neuropathic pain and that blocking agents against these channels can be potentially therapeutic. In the current study, we investigated whether a novel compound, (-)-2-Amino-1-(4-((4-chlorophenyl)(phenyl)methyl)piperazin-1-yl)-propan-1-one(HYP-17), binds to VGSCs and evaluated its inhibitory effect on Na+ currents of the rat dorsal root ganglia (DRG) sensory neurons and its analgesic effect on inflammatory and neuropathic pain. HYP-17 (10µM) reduced both the tetrodotoxin-sensitive (TTX-S) and the TTX-resistant (TTX-R) currents in DRG sensory neurons. However, neither the voltage-dependent activation curves nor the steady-state inactivation curves for TTX-S and TTX-R currents were changed by HYP-17. In rats injected with 5% formalin under the plantar surface of the hind paw, HYP-17 (10µg) significantly reduced both the early and late phase spontaneous pain behaviors. Systemic injection with HYP-17 (60mg/kg, i.p.) also significantly relieved the mechanical, cold, and warm allodynia induced by rat tail nerve injury. Furthermore, HYP-17 (60mg/kg, i.p.) significantly relieved the central neuropathic pain induced by spinal cord injury (SCI), and inhibited c-Fos expression in lumbar (L) 4-L5 spinal segments. Electrophysiological study showed that HYP-17 significantly attenuated the hyper-responsiveness of lumbar dorsal horn neurons. In addition, HYP-17 significantly reduced the levels of pp38MAPK and p-JNK in microglia and astrocytes, respectively, in the L4-L5 spinal dorsal horn. Therefore, our results indicate that HYP-17 has potential analgesic activities against nociceptive, inflammatory and neuropathic pain.


Subject(s)
Alanine/analogs & derivatives , Analgesics/pharmacology , Neuralgia/drug therapy , Piperazines/pharmacology , Voltage-Gated Sodium Channel Blockers/pharmacology , Alanine/pharmacology , Animals , Evoked Potentials/drug effects , Extracellular Signal-Regulated MAP Kinases/physiology , Glial Fibrillary Acidic Protein/analysis , Male , Microglia/drug effects , Microglia/physiology , Proto-Oncogene Proteins c-fos/analysis , Rats , Rats, Sprague-Dawley , Spinal Cord Injuries/physiopathology , Tetrodotoxin/pharmacology , p38 Mitogen-Activated Protein Kinases/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...