Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Anim Sci Technol ; 66(2): 266-278, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38628683

ABSTRACT

Antibiotic resistance (AR) is a complex, multifaceted global health issue that poses a serious threat to livestock, humans, and the surrounding environment. It entails several elements and numerous potential transmission routes and vehicles that contribute to its development and spread, making it a challenging issue to address. AR is regarded as an One Health issue, as it has been found that livestock, human, and environmental components, all three domains are interconnected, opening up channels for transmission of antibiotic resistant bacteria (ARB). AR has turned out to be a critical problem mainly because of the overuse and misuse of antibiotics, with the anticipation of 10 million annual AR-associated deaths by 2050. The fact that infectious diseases induced by ARB are no longer treatable with antibiotics foreshadows an uncertain future in the context of health care. Hence, the One Health approach should be emphasized to reduce the impact of AR on livestock, humans, and the environment, ensuring the longevity of the efficacy of both current and prospective antibiotics.

2.
Environ Sci Pollut Res Int ; 30(58): 121487-121500, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37950785

ABSTRACT

Due to food borne pathogen, maintaining the viability of fresh fruits and vegetable is a great concern. Several strategies including microbial and plant-based formulations to reduce their infection and maintain quality of the fresh food are in practice. Currently, Bacillus has gained significant traction as a biocontrol agent for regulating diseases affecting a variety of agricultural and horticultural crops. Food-grade citric acid and plant growth-promoting rhizobacteria (PGPR) were used as antimicrobial agent, MIC results showed that PGPR (14.87 mm) and CA (20.25 mm) exhibited notable antimicrobial activity against E. coli. Lettuce treated with PGPR showed reduction in E. coli contamination, E. coli was detected at 3.30, 3.68 in control, and 2.7 log CFU/g in random root injury lettuce inoculated with PGPR KACC 21110 respectively. Random root injury showed a trend toward increasing E. coli internalization. The strains exhibited resistance to multiple antibiotics, including Imipenem, tetracycline, ampicillin, cefotaxime, cefoxitin, and ceftriaxone. Comprehensive data analysis revealed the presence of ten putative bacteriocin or bacteriocin-like gene clusters. The structure of lipopeptide homologs was characterized by using QTOF-MS/MS. The mass ion peaks attributed to surfactin homologs, surfactin A ion at m/z 1008.66, surfactin B, C at m/z 1022.67 and 1036.69. In addition to surfactin, a polyketide oxydifficidin and lipopeptide NO were extracted and detected from the extract of B. velezensis. Both isolates are key biocontrol agents and have significant potential in combating foodborne pathogens and can be utilized to explore novel antibacterial products for preventing pathogens in fresh produce.


Subject(s)
Bacillus , Bacteriocins , Escherichia coli , Hydroponics , Tandem Mass Spectrometry , Bacillus/chemistry , Anti-Bacterial Agents/pharmacology , Genomics , Lipopeptides
3.
Microorganisms ; 11(5)2023 May 08.
Article in English | MEDLINE | ID: mdl-37317216

ABSTRACT

The consumption of fresh produce and fruits has increased over the last few years as a result of increasing consumer awareness of healthy lifestyles. Several studies have shown that fresh produces and fruits could be potential sources of human pathogens and antibiotic-resistant bacteria. In this study, 248 strains were isolated from lettuce and surrounding soil samples, and 202 single isolates selected by the random amplified polymorphic DNA (RAPD) fingerprinting method were further characterized. From 202 strains, 184 (91.2%) could be identified based on 16S rRNA gene sequencing, while 18 isolates (8.9%) could not be unequivocally identified. A total of 133 (69.3%) and 105 (54.7%) strains showed a resistance phenotype to ampicillin and cefoxitin, respectively, while resistance to gentamicin, tobramycin, ciprofloxacin, and tetracycline occurred only at low incidences. A closer investigation of selected strains by whole genome sequencing showed that seven of the fifteen sequenced strains did not possess any genes related to acquired antibiotic resistance. In addition, only one strain possessed potentially transferable antibiotic resistance genes together with plasmid-related sequences. Therefore, this study indicates that there is a low possibility of transferring antibiotic resistance by potential pathogenic enterobacteria via fresh produce in Korea. However, with regards to public health and consumer safety, fresh produce should nevertheless be continuously monitored to detect the occurrence of foodborne pathogens and to hinder the transfer of antibiotic resistance genes potentially present in these bacteria.

4.
J Anim Sci Technol ; 65(1): 175-182, 2023 Jan.
Article in English | MEDLINE | ID: mdl-37093913

ABSTRACT

Antibiotics have been used in livestock production for not only treatment but also for increasing the effectiveness of animal feed, aiding animal growth, and preventing infectious diseases at the time when immunity is lowered due to stress. South Korea and the EU are among the countries that have prohibited the use of antibiotics for growth promotion in order to prevent indiscriminate use of antibiotics, as previous studies have shown that it may lead to increase in cases of antibiotic-resistant bacteria. Therefore, this study evaluated the number of antibiotic resistance genes in piglets staging from pre-weaning to weaning. Fecal samples were collected from 8 piglets just prior to weaning (21 d of age) and again one week after weaning (28 d of age). Total DNA was extracted from the 200 mg of feces collected from the 8 piglets. Whole metagenome shotgun sequencing was carried out using the Illumina Hi-Seq 2000 platform and raw sequence data were imported to Metagenomics Rapid Annotation using Subsystem Technology (MG-RAST) pipeline for microbial functional analysis. The results of this study did not show an increase in antibiotic-resistant bacteria although confirmed an increase in antibiotic-resistant genes as the consequence of changes in diet and environment during the experiment.

5.
J Microbiol Biotechnol ; 33(1): 51-60, 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36517072

ABSTRACT

The foodborne illness is the important public health concerns, and the livestock feces are known to be one of the major reservoirs of foodborne pathogens. Also, it was reported that 45.5% of foodborne illness outbreaks have been associated with the animal products contaminated with the livestock feces. In addition, it has been known that the persistence of a pathogens depends on many potential virulent factors including the various virulent genes. Therefore, the first step to understanding the public health risk of livestock feces is to identify and describe microbial communities and potential virulent genes that contribute to bacterial pathogenicity. We used the whole metagenome shotgun sequencing to evaluate the prevalence of foodborne pathogens and to characterize the virulence associated genes in pig and chicken feces. Our data showed that the relative abundance of potential foodborne pathogens, such as Bacillus cereus was higher in chickens than pigs at the species level while the relative abundance of foodborne pathogens including Campylobacter coli was only detected in pigs. Also, the microbial functional characteristics of livestock feces revealed that the gene families related to "Biofilm formation and quorum sensing" were highly enriched in pigs than chicken. Moreover, the variety of gene families associated with "Resistance to antibiotics and toxic compounds" were detected in both animals. These results will help us to prepare the scientific action plans to improve awareness and understanding of the public health risks of livestock feces.


Subject(s)
Foodborne Diseases , Microbiota , Animals , Swine , Livestock , Metagenome , Chickens , Foodborne Diseases/microbiology , Feces/microbiology
6.
Front Microbiol ; 13: 906040, 2022.
Article in English | MEDLINE | ID: mdl-36081801

ABSTRACT

Lettuce wraps are popular in Korean cuisine for their high nutritional value and versatility as healthy additions to multiple dishes. Microbial contamination of lettuce is a major concern, as lettuce is consumed fresh without cooking. Among foodborne pathogens, the spore-forming, facultative anaerobic bacterium, Bacillus cereus is one of the frequently detected pathogen in lettuce in Korea. In this study, we investigated the prevalence and distribution of Bacillus cereus strains in lettuce production farms and further evaluated the enterotoxin gene profiles, antibiotic susceptibility, multidrug resistance pattern, and genetic differences among the B. cereus group isolates. Of the 140 samples isolated from 10 lettuce production farms, 30 samples (21.42%) were positive for B. cereus in which 19 (31.6%) and 10 (23.25%) were from soil and lettuce, respectively. The enterotoxin patterns A (hblCDA, nheABC, entFM, and cytK genes) and B (hblCDA, nheABC, and entFM genes) accounted for 50% and 20% of all the isolates, whereas the emetic gene cesB was not detected in any of the B. cereus group isolates. Antibiotic susceptibility testing of the B. cereus group isolates revealed that all the strains were predominantly resistant to ß-lactam antibiotics except imipenem and generally susceptible to most of the non ß-lactam antibiotics, including gentamycin, streptomycin, chloramphenicol, and tetracycline. ERIC-PCR and MLST analysis revealed high genetic diversity among the 30 B. cereus group isolates, which belonged to 26 different sequence types (STs) and seven new STs. Moreover, isolates with identical STs exhibited similar patterns of antibiotic resistance and enterotoxin profiles. Results of this study indicate a high prevalence of B. cereus group isolates in lettuce production farms in the Republic of Korea.

7.
IEEE Trans Cybern ; 48(3): 941-954, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28252416

ABSTRACT

This paper proposes three coordination laws for optimal energy generation and distribution in energy network, which is composed of physical flow layer and cyber communication layer. The physical energy flows through the physical layer; but all the energies are coordinated to generate and flow by distributed coordination algorithms on the basis of communication information. First, distributed energy generation and energy distribution laws are proposed in a decoupled manner without considering the interactive characteristics between the energy generation and energy distribution. Second, a joint coordination law to treat the energy generation and energy distribution in a coupled manner taking account of the interactive characteristics is designed. Third, to handle over- or less-energy generation cases, an energy distribution law for networks with batteries is designed. The coordination laws proposed in this paper are fully distributed in the sense that they are decided optimally only using relative information among neighboring nodes. Through numerical simulations, the validity of the proposed distributed coordination laws is illustrated.

SELECTION OF CITATIONS
SEARCH DETAIL
...