Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Cancer Prev ; 28(2): 40-46, 2023 Jun 30.
Article in English | MEDLINE | ID: mdl-37434796

ABSTRACT

Excessive UVB exposure causes development of both malignant and non-malignant melanoma via the secretion of α-melanocyte-stimulating hormone (α-MSH). We investigated whether baicalein (5,6,7-trihydroxyflavone) could inhibit α-MSH-stimulated melanogenesis. Baicalein prevented UVB- and α-MSH-induced melanin production and attenuated α-MSH-stimulated tyrosinase (monophenol monooxygenase) activity, and expression of tyrosinase and tyrosine-related protein-2. In addition, baicalein prevented melanogenesis and pigmentation via the p38 mitogen-activated protein kinases signaling pathway. These findings suggest that baicalein represents a natural compound for attenuating melanogenesis.

2.
Mol Med Rep ; 16(5): 6870-6875, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28901448

ABSTRACT

Oxidative stress enhances cellular DNA oxidation and may cause mutations in DNA bases, including 8­oxoguanine (8­oxoG). Our recent study reported that exposure of cells to non­thermal dielectric barrier discharge (DBD) plasma generates reactive oxygen species and damages DNA. The present study investigated the effect of non­thermal DBD plasma exposure on the formation of 8­oxoG in HaCaT human keratinocytes. Cells exposed to DBD plasma exhibited increased level of 8­oxoG. In addition, mRNA and protein expression levels of 8­oxoguanine glycosylase 1 (OGG1), an 8­oxoG repair enzyme, were reduced in plasma­exposed cells. Furthermore, the expression level of nuclear factor erythroid 2­related factor 2 (Nrf2), a transcription factor that regulates OGG1 gene expression, was reduced following exposure to DBD plasma. Pretreatment of cells with an antioxidant, N­acetyl cysteine (NAC), prior to plasma exposure suppressed the formation of 8­oxoG and restored the expression levels of OGG1 and Nrf2. In addition, phosphorylation of protein kinase B (Akt), which regulates the activation of Nrf2, was reduced following plasma exposure. However, phosphorylation was restored by pretreatment with NAC. These findings suggested that non­thermal DBD plasma exposure generates 8­oxoG via inhibition of the Akt­Nrf2­OGG1 signaling pathway in HaCaT cells.


Subject(s)
DNA Damage/drug effects , DNA Glycosylases/metabolism , Down-Regulation/drug effects , Guanine/analogs & derivatives , Plasma Gases/toxicity , Up-Regulation/drug effects , Acetylcysteine/pharmacology , Cell Line , DNA/isolation & purification , DNA/metabolism , DNA Glycosylases/genetics , Enzyme-Linked Immunosorbent Assay , Guanine/analysis , Guanine/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/metabolism , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism
3.
Biomol Ther (Seoul) ; 25(4): 427-433, 2017 Jul 01.
Article in English | MEDLINE | ID: mdl-27829272

ABSTRACT

Previously, we demonstrated that galangin (3,5,7-trihydroxyflavone) protects human keratinocytes against ultraviolet B (UVB)-induced oxidative damage. In this study, we investigated the effect of galangin on induction of antioxidant enzymes involved in synthesis of reduced glutathione (GSH), and investigated the associated upstream signaling cascades. By activating nuclear factor-erythroid 2-related factor (Nrf2), galangin treatment significantly increased expression of glutamate-cysteine ligase catalytic subunit (GCLC) and glutathione synthetase (GSS). This activation of Nrf2 depended on extracellular signal-regulated kinases (ERKs) and protein kinase B (AKT) signaling. Inhibition of GSH in galangin-treated cells attenuated the protective effect of galangin against the deleterious effects of UVB. Our results reveal that galangin protects human keratinocytes by activating ERK/AKT-Nrf2, leading to elevated expression of GSH-synthesizing enzymes.

4.
Biomol Ther (Seoul) ; 25(3): 315-320, 2017 May 01.
Article in English | MEDLINE | ID: mdl-27737524

ABSTRACT

We investigated the role of autophagy in SNUC5/5-FUR, 5-fluorouracil (5-FU) resistant SNUC5 colon cancer cells. SNUC5/5- FUR cells exhibited low level of autophagy, as determined by light microscopy, confocal microscopy, and flow cytometry following acridine orange staining, and the decreased level of GFP-LC3 puncta. In addition, expression of critical autophagic proteins such as Atg5, Beclin-1 and LC3-II and autophagic flux was diminished in SNUC5/5-FUR cells. Whereas production of reactive oxygen species (ROS) was significantly elevated in SNUC5/5-FUR cells, treatment with the ROS inhibitor N-acetyl cysteine further reduced the level of autophagy. Taken together, these results indicate that decreased autophagy is linked to 5-FU resistance in SNUC5 colon cancer cells.

5.
Biomol Ther (Seoul) ; 24(6): 616-622, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-27257012

ABSTRACT

Baicalein (5,6,7-trihydroxy-2-phenyl-chromen-4-one) is a flavone, a type of flavonoid, originally isolated from the roots of Scutellaria baicalensis. This study evaluated the protective effects of baicalein against oxidative damage-mediated apoptosis induced by ultraviolet B (UVB) radiation in a human keratinocyte cell line (HaCaT). Baicalein absorbed light within the wavelength range of UVB. In addition, baicalein decreased the level of intracellular reactive oxygen species (ROS) in response to UVB radiation. Baicalein protected cells against UVB radiation-induced DNA breaks, 8-isoprostane generation and protein modification in HaCaT cells. Furthermore, baicalein suppressed the apoptotic cell death by UVB radiation. These findings suggest that baicalein protected HaCaT cells against UVB radiation-induced cell damage and apoptosis by absorbing UVB radiation and scavenging ROS.

6.
Environ Toxicol Pharmacol ; 44: 128-33, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27163731

ABSTRACT

Colon cancer can be treated with 5-fluorouracil (5-FU), but 5-FU resistance frequently occurs. We determined whether 5-FU resistance arises as a result of endoplasmic reticulum (ER) stress. 5-FU-resistant SNUC5 colon cancer cells (SNUC5/FUR cells) expressed higher levels of ER stress-related proteins than drug-sensitive SNUC5 cells. SNUC5/FUR cells also exhibited more intense ER staining and higher level of mitochondrial Ca(2+) overload. SNUC5/FUR cells transfected with siRNA against GRP78, ATF6, ERK, or AKT were more sensitive to 5-FU than siControl RNA-transfected cells. These results suggested that 5-FU resistance was associated with ER stress in colon cancer.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Drug Resistance, Neoplasm , Endoplasmic Reticulum Stress , Fluorouracil/pharmacology , Activating Transcription Factor 6/genetics , Calcium/metabolism , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/metabolism , Endoplasmic Reticulum Chaperone BiP , Extracellular Signal-Regulated MAP Kinases/genetics , Gene Knockdown Techniques , Heat-Shock Proteins/genetics , Humans , Mitochondria/metabolism , Proto-Oncogene Proteins c-akt/genetics , RNA, Small Interfering/genetics
7.
J Cancer Prev ; 21(1): 41-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27051648

ABSTRACT

BACKGROUND: Hyperoside, a flavonoid which is mainly found in Hypericum perforatum L., has many biological effects. One of the most important effects is to prevent the oxidative stress induced by reactive oxygen species. However, the molecular mechanisms underlying its effect are not fully understood. Oxidative stress is implicated in the occurrence of various physical diseases. A wide array of enzymatic antioxidant defense systems include NADH: quinone oxidoreductase 1, superoxide dismutase, and heme oxygenase-1 (HO-1). In the present study, the protective effects of hyperoside against hydrogen peroxide-induced oxidative stress in human lens epithelial cells, HLE-B3, were investigated in terms of HO-1 induction. METHODS: The protein and mRNA expressions of HO-1 were examined by Western blotting and reverse transcriptase-PCR assays, respectively. To evaluate the ability of hyperoside to activate nuclear factor erythroid 2-related factor 2 (Nrf2), Western blotting and electrophoretic mobility shift assay were performed with nuclear extracts prepared from HLE-B3 cells treated with hyperoside. The activation of extracellular signal-regulated kinase (ERK), the upstream kinase of Nrf2 signaling, was monitored by Western blot analysis. The protective effect of hyperoside in HLE-B3 cells against hydrogen peroxide was performed by MTT assay. RESULTS: Hyperoside increased both the mRNA and protein expression of HO-1 in a time- and dose-dependent manner. In addition, hyperoside elevated the level of of Nrf2 and its antioxidant response element-binding activity, which was modulated by upstream of ERK. Moreover, it activated ERK and restored cell viability which was decreased by hydrogen peroxide. CONCLUSIONS: Hyperoside is an effective compound to protect cells against oxidative stress via HO-1 induction.

8.
Anticancer Res ; 36(5): 2281-9, 2016 May.
Article in English | MEDLINE | ID: mdl-27127134

ABSTRACT

BACKGROUND: This study aimed to investigate whether luteolin, a flavonoid, induces apoptosis in human melanoma cells via endoplasmic reticulum (ER) stress. MATERIALS AND METHODS: To investigate the effects of luteolin in human melanoma cells, the anti-proliferation, apoptosis, ER stress induction and reactive oxygen species (ROS) generation were evaluated using MTT, Hoechst 33342, ER-tracker Blue White DPX and DCF-DA staining assays, respectively. RESULTS: Luteolin inhibited cell proliferation and increased apoptotic body formation. Luteolin induced ER stress, as shown by ER staining and mitochondrial Ca(2+) overloading. Luteolin increased expression of the ER stress-related proteins; protein kinase RNA-like ER kinase, phospho eukaryotic translation initiation factor 2α, activating transcription factor (ATF) 6, CCAAT/enhancer-binding protein-homologous protein (CHOP), and cleaved caspase 12. Furthermore, luteolin increased the level of intracellular ROS, leading to ROS-mediated apoptosis and ER stress. However, N-acetyl cysteine, a ROS scavenger, decreased ROS levels, apoptosis, and ER stress induced by luteolin treatment. In addition, knockdown of CHOP and ATF6 by small-interfering RNA inhibited luteolin-induced cell death. CONCLUSION: Luteolin induces apoptosis by ER stress via increasing ROS levels.


Subject(s)
Endoplasmic Reticulum Stress/drug effects , Luteolin/pharmacology , Melanoma/pathology , Reactive Oxygen Species , Activating Transcription Factor 6/antagonists & inhibitors , Activating Transcription Factor 6/genetics , Apoptosis/drug effects , Calcium/analysis , Cell Line, Tumor , Gene Expression Regulation, Neoplastic/drug effects , Humans , Mitochondria/chemistry , Mitochondria/drug effects , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , RNA, Small Interfering/genetics , Staining and Labeling , Transcription Factor CHOP/antagonists & inhibitors , Transcription Factor CHOP/genetics , Transfection , Tumor Stem Cell Assay
9.
Biomol Ther (Seoul) ; 24(3): 312-9, 2016 May 01.
Article in English | MEDLINE | ID: mdl-26797112

ABSTRACT

Human skin cells undergo pathophysiological processes via generation of reactive oxygen species (ROS) upon excessive exposure to ultraviolet B (UVB) radiation. This study investigated the ability of hesperidin (C28H34O15) to prevent apoptosis due to oxidative stress generated through UVB-induced ROS. Hesperidin significantly scavenged ROS generated by UVB radiation, attenuated the oxidation of cellular macromolecules, established mitochondrial membrane polarization, and prevented the release of cytochrome c into the cytosol. Hesperidin downregulated expression of caspase-9, caspase-3, and Bcl-2-associated X protein, and upregulated expression of B-cell lymphoma 2. Hesperidin absorbed wavelengths of light within the UVB range. In summary, hesperidin shielded human keratinocytes from UVB radiation-induced damage and apoptosis via its antioxidant and UVB absorption properties.

10.
Tumour Biol ; 37(7): 9615-24, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26797785

ABSTRACT

Fisetin (3,3',4',7-tetrahydroxyflavone), a dietary flavonoid compound, is currently being investigated for its anticancer effect in various cancer models, including lung cancer. Recent studies show that fisetin induces cell growth inhibition and apoptosis in the human non-small cell lung cancer line NCI-H460. In this study, we investigated whether fisetin can induce endoplasmic reticulum (ER) stress-mediated apoptosis in NCI-H460 cells. Fisetin induced mitochondrial reactive oxygen species (ROS) and characteristic signs of ER stress: ER staining; mitochondrial Ca(2+) overload; expression of ER stress-related proteins; glucose-regulated protein (GRP)-78, phosphorylation of protein kinase RNA (PKR)-like endoplasmic reticulum kinase (PERK) and phosphorylation of eukaryotic initiation factor-2 α subunit; cleavage of activating transcription factor-6; phosphorylation of inositol-requiring kinase-1 and splicing of X-box transcription factor-1; induction of C/EBP homologous protein and cleaved caspase-12. siRNA-mediated knockdown of CHOP and ATF-6 attenuated fisetin-induced apoptotic cell death. In addition, fisetin induced phosphorylation of ERK, JNK, and p38 MAPK. Moreover, silencing of the MAPK signaling pathway prevented apoptotic cell death. In summary, our results indicate that, in NCI-H460 cells, fisetin induces apoptosis and ER stress that is mediated by induction of the MAPK signaling pathway.


Subject(s)
Apoptosis/drug effects , Carcinoma, Non-Small-Cell Lung/drug therapy , Endoplasmic Reticulum Stress/drug effects , Flavonoids/pharmacology , Lung Neoplasms/drug therapy , Mitogen-Activated Protein Kinases/metabolism , Signal Transduction/drug effects , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Death/drug effects , Endoplasmic Reticulum/drug effects , Endoplasmic Reticulum/metabolism , Flavonols , Humans , Lung Neoplasms/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , Phosphorylation/drug effects , Reactive Oxygen Species/metabolism
11.
J Cancer Prev ; 21(4): 257-263, 2016 Dec.
Article in English | MEDLINE | ID: mdl-28053960

ABSTRACT

BACKGROUND: Isoflavones are biologically active compounds that occur naturally in a variety of plants, with relatively high levels in soybean. Tectorigenin, an isoflavone, protects against hydrogen peroxide (H2O2)-induced cell damage. However, the underlying mechanism is unknown. METHODS: The MTT assay was performed to determine cell viability. Catalase activity was assessed by determining the amount of enzyme required to degrade 1 µM H2O2. Protein expression of catalase, phospho-extracellular signal-regulated kinase (ERK), IκB-α, and NF-κB were evaluated by Western blot analysis. A mobility shift assay was performed to assess the DNA-binding ability of NF-κB. Transient transfection and a NF-κB luciferase assay were performed to assess transcriptional activity. RESULTS: Tectorigenin reduced H2O2-induced death of Chinese hamster lung fibroblasts (V79-4). In addition, tectorigenin increased the activity and protein expression of catalase. Blockade of catalase activity attenuated the protective effect of tectorigenin against oxidative stress. Furthermore, tectorigenin enhanced phosphorylation of ERK and nuclear expression of NF-κB, while inhibition of ERK and NF-κB attenuated the protective effect of tectorigenin against oxidative stress. CONCLUSIONS: Tectorigenin protects cells against oxidative damage by activating catalase and modulating the ERK and NF-κB signaling pathway.

SELECTION OF CITATIONS
SEARCH DETAIL
...