Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0300754, 2024.
Article in English | MEDLINE | ID: mdl-38635543

ABSTRACT

Sika deer inhabiting South Korea became extinct when the last individual was captured on Jeju Island in Korea in 1920 owing to the Japanese seawater relief business, but it is believed that the same subspecies (Cervus nippon hortulorum) inhabits North Korea and the Russian Primorskaya state. In our study, mt-DNA was used to analyze the genetic resources of sika deer in the vicinity of the Korean Peninsula to restore the extinct species of continental deer on the Korean Peninsula. In addition, iSCNT was performed using cells to analyze the potential for restoration of extinct species. The somatic cells of sika deer came from tissues of individuals presumed to be Korean Peninsula sika deer inhabiting the neighboring areas of the Primorskaya state and North Korea. After sequencing 5 deer samples through mt-DNA isolation and PCR, BLAST analysis showed high matching rates for Cervus nippon hortulorum. This shows that the sika deer found near the Russian Primorsky Territory, inhabiting the region adjacent to the Korean Peninsula, can be classified as a subspecies of Cervus nippon hortulorum. The method for producing cloned embryos for species restoration confirmed that iSCNT-embryos developed smoothly when using porcine oocytes. In addition, the stimulation of endometrial cells and progesterone in the IVC system expanded the blastocyst cavity and enabled stable development of energy metabolism and morphological changes in the blastocyst. Our results confirmed that the individual presumed to be a continental deer in the Korean Peninsula had the same genotype as Cervus nippon hortulorum, and securing the individual's cell-line could restore the species through replication and produce a stable iSCNT embryo.


Subject(s)
Deer , Humans , Animals , Swine , Deer/physiology , Oocytes/chemistry , DNA, Mitochondrial/genetics , Democratic People's Republic of Korea , Republic of Korea
2.
Cells ; 12(1)2022 12 30.
Article in English | MEDLINE | ID: mdl-36611954

ABSTRACT

Trophoblast cells of endometrium during bovine pregnancy with different characteristics undergo dynamic changes during uterine remodeling, which can be observed as continuous changes, as P4 secreted by the mother is replaced by placental hormones. In this context, the present study analyzed tissues' morphological changes through uterine apoptosis during early pregnancy. In addition, the expression pattern associated with apoptosis genes and 20α-HSD was determined in the endometrium and caruncle tissues. The localization of 20α-HSD, VEGF, Casp3, and mTOR protein was also determined in endometrium and caruncle during early pregnancy. From around 30 days, caruncle trophoblast cells with very high invasiveness expanded the villus section as the gestation period progressed. The surrounding cells detached and reorganized into new cells. In addition, an analysis of the effect of apoptosis on cell reorganization in the caruncle revealed that the expression of 20α-HSD/Casp-3 signals in the villus section gradually increased from 30 to 90 days. However, on the 30th day, glandular epithelial cells occurred sporadically in the trophoblast cell section. Moreover, the apoptosis of trophoblast cells increased at 90 days. Taken together, the results of the present study show that changes in the uterus during early pregnancy promote changes during later pregnancy by inducing the reorganization through the stimulation of 20α-HSD and Casp-3, promoting uterine and caruncle tissues, unlike cell development mediated by hormone signaling.


Subject(s)
Placenta , Uterus , Animals , Cattle , Female , Pregnancy , Endometrium/metabolism , Placenta/metabolism , RNA, Messenger/genetics , Uterus/metabolism , 20-alpha-Hydroxysteroid Dehydrogenase/metabolism , Apoptosis , Caspase 3/metabolism
3.
J Adv Vet Anim Res ; 8(2): 266-273, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34395597

ABSTRACT

OBJECTIVE: The TYR (Tyrosinase) and MC1R (Melanocortin 1 receptor) genes are recognized as important genes involved in plumage pigmentation in Korean native chickens. Specifically, most color patterns in chicken result from differential expression of the TYR gene. In this study, the co-segregation of the pigmentation and sequence of the TYR and MC1R genes was investigated through intercrosses between red (R1q1), red with black and black plumage color types of native Korean chickens. MATERIALS AND METHODS: Using DNA, RNA, and tissue by plumage color of each Korean native chickens, the role of major genes in pigmentation of pheomelanin was evaluated. Reverse transcription polymerase chain reaction, sequencing, western blot, and immunohistochemical were performed to determine the effect of TYR and MC1R genes on plumage pigmentation in Korean native chickens. RESULTS: The KCO line (Korean chicken Ogol: Black-line) with an EEC _ genotype exhibited black feathers, whereas red and red mixed with black chicken with EeC genotype exhibited white feathers. There were notable differences between the base sequences of MC1R and TYR in three Korean chicken breeds, with the highest variation in TYR. Perhaps this is the key characteristics of Korean chicken. Further, we analyzed the expression patterns of MC1R and TYR genes in each type of Korea native chicken and observed that TYR expression was high in feather follicle (R1q2) of KCO tissue. However, native red (Korean chicken red) and native red with black (Korean chicken red dark) chickens have increased TYR expression in the tissue. However, the expression of MC1R was much different from that of TYR. CONCLUSION: In this study, our results suggest that the differences in position and TYR expression levels exert more influence on plumage pigmentation in native Korean chicken breeds than changes in MC1R expression levels.

4.
Histol Histopathol ; 36(8): 833-844, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33829420

ABSTRACT

Cells cultured as monolayers proliferate well, but do not sustain their differentiation characteristics. Previous studies have investigated the interactions between cells and growth factors or cytokines by establishing either in vivo or in vitro three-dimensional (3D) cultures. Using porcine uterine epithelial cells and endometrial cells, the current study was designed to develop a 3D uterine culture system and investigate the response to hormone treatment. Formation of the 3D uterine model was similar to that of uterus from the group supplemented with calcium and magnesium, and the addition of these ions altered the spectrum of basement membrane degrading enzyme expression and activity. In particular, the epithelial cell junctions in the 3D model most closely resembled those of an actual uterus when the medium was supplemented with calcium and magnesium; the intercellular basement membrane structure was also tall under these conditions. The study confirmed that Casp-3 expression was lowest in the P4 (progesterone) treatment group, and this hormone was the most potent stimulus for formation of the endometrial cell layer. Therefore, the addition of calcium and magnesium plays an important role in the formation of a 3D uterine model, and the addition of P4 hormone mimics uterine thickening by stimulating growth of the epithelial cell layer.


Subject(s)
Endometrium/cytology , Endometrium/pathology , Estradiol/pharmacology , Progesterone/pharmacology , Stromal Cells/cytology , Animals , Coculture Techniques , Endometrium/metabolism , Female , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Stromal Cells/drug effects , Stromal Cells/metabolism , Swine , Tissue Inhibitor of Metalloproteinase-2/metabolism , Tissue Inhibitor of Metalloproteinase-3/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...