Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 81(3): 546-557.e5, 2021 02 04.
Article in English | MEDLINE | ID: mdl-33378643

ABSTRACT

Eukaryotic cells regulate 5'-triphosphorylated RNAs (ppp-RNAs) to promote cellular functions and prevent recognition by antiviral RNA sensors. For example, RNA capping enzymes possess triphosphatase domains that remove the γ phosphates of ppp-RNAs during RNA capping. Members of the closely related PIR-1 (phosphatase that interacts with RNA and ribonucleoprotein particle 1) family of RNA polyphosphatases remove both the ß and γ phosphates from ppp-RNAs. Here, we show that C. elegans PIR-1 dephosphorylates ppp-RNAs made by cellular RNA-dependent RNA polymerases (RdRPs) and is required for the maturation of 26G-RNAs, Dicer-dependent small RNAs that regulate thousands of genes during spermatogenesis and embryogenesis. PIR-1 also regulates the CSR-1 22G-RNA pathway and has critical functions in both somatic and germline development. Our findings suggest that PIR-1 modulates both Dicer-dependent and Dicer-independent Argonaute pathways and provide insight into how cells and viruses use a conserved RNA phosphatase to regulate and respond to ppp-RNA species.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Phosphoric Monoester Hydrolases/metabolism , RNA Processing, Post-Transcriptional , RNA/metabolism , Animals , Animals, Genetically Modified , Caenorhabditis elegans/embryology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Gene Expression Regulation, Developmental , Phosphoric Monoester Hydrolases/genetics , Phosphorylation , RNA/genetics , RNA Caps , RNA-Dependent RNA Polymerase/genetics , RNA-Dependent RNA Polymerase/metabolism , Ribonuclease III/genetics , Ribonuclease III/metabolism , Spermatogenesis , Substrate Specificity
2.
Br J Cancer ; 122(9): 1288-1297, 2020 04.
Article in English | MEDLINE | ID: mdl-32147668

ABSTRACT

BACKGROUND: Previous studies suggested that mdivi-1 (mitochondrial division inhibitor), a putative inhibitor of dynamin-related protein (DRP1), decreased cancer cell proliferation through inducing mitochondrial fusion and altering oxygen consumption. However, the metabolic reprogramming underlying the DRP1 inhibition is still unclear in cancer cells. METHODS: To better understand the metabolic effect of DRP1 inhibition, [U-13C]glucose isotope tracing was employed to assess mdivi-1 effects in several cancer cell lines, DRP1-WT (wild-type) and DRP1-KO (knockout) H460 lung cancer cells and mouse embryonic fibroblasts (MEFs). RESULTS: Mitochondrial staining confirmed that mdivi-1 treatment and DRP1 deficiency induced mitochondrial fusion. Surprisingly, metabolic isotope tracing found that mdivi-1 decreased mitochondrial oxidative metabolism in the lung cancer cell lines H460, A549 and the colon cancer cell line HCT116. [U-13C]glucose tracing studies also showed that the TCA cycle intermediates had significantly lower enrichment in mdivi-1-treated cells. In comparison, DRP1-WT and DRP1-KO H460 cells had similar oxidative metabolism, which was decreased by mdivi-1 treatment. Furthermore, mdivi-1-mediated effects on oxidative metabolism were independent of mitochondrial fusion. CONCLUSIONS: Our data suggest that, in cancer cells, mdivi-1, a putative inhibitor of DRP1, decreases oxidative metabolism to impair cell proliferation.


Subject(s)
Dynamins/genetics , Mitochondria/drug effects , Oxidative Stress/drug effects , Quinazolinones/pharmacology , A549 Cells , Animals , Carbon Isotopes/chemistry , Carbon Isotopes/pharmacology , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Colonic Neoplasms/pathology , Dynamins/antagonists & inhibitors , Gene Knockout Techniques , Glucose/chemistry , Glucose/pharmacology , HCT116 Cells , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mice , Mitochondria/metabolism , Mitochondrial Dynamics/drug effects , Oxygen Consumption/drug effects
3.
Commun Biol ; 1: 178, 2018.
Article in English | MEDLINE | ID: mdl-30393775

ABSTRACT

Defective arginine synthesis, due to the silencing of argininosuccinate synthase 1 (ASS1), is a common metabolic vulnerability in cancer, known as arginine auxotrophy. Understanding how arginine depletion kills arginine-auxotrophic cancer cells will facilitate the development of anti-cancer therapeutic strategies. Here we show that depletion of extracellular arginine in arginine-auxotrophic cancer cells causes mitochondrial distress and transcriptional reprogramming. Mechanistically, arginine starvation induces asparagine synthetase (ASNS), depleting these cancer cells of aspartate, and disrupting their malate-aspartate shuttle. Supplementation of aspartate, depletion of mitochondria, and knockdown of ASNS all protect the arginine-starved cells, establishing the causal effects of aspartate depletion and mitochondrial dysfunction on the arginine starvation-induced cell death. Furthermore, dietary arginine restriction reduced tumor growth in a xenograft model of ASS1-deficient breast cancer. Our data challenge the view that ASNS promotes homeostasis, arguing instead that ASNS-induced aspartate depletion promotes cytotoxicity, which can be exploited for anti-cancer therapies.

4.
J Neurooncol ; 131(2): 267-276, 2017 01.
Article in English | MEDLINE | ID: mdl-27785688

ABSTRACT

Pediatric posterior fossa (PF) tumor survivors experience long-term motor deficits. Specific cerebrocerebellar connections may be involved in incidence and severity of motor dysfunction. We examined the relationship between long-term ataxia as well as fine motor function and alteration of differential cerebellar efferent and afferent pathways using diffusion tensor imaging (DTI) and tractography. DTI-based tractography was performed in 19 patients (10 pilocytic astrocytoma (PA) and 9 medulloblastoma patients (MB)) and 20 healthy peers. Efferent Cerebello-Thalamo-Cerebral (CTC) and afferent Cerebro-Ponto-Cerebellar (CPC) tracts were reconstructed and analyzed concerning fractional anisotropy (FA) and volumetric measurements. Clinical outcome was assessed with the International Cooperative Ataxia Rating Scale (ICARS). Kinematic parameters of fine motor function (speed, automation, variability, and pressure) were obtained by employing a digitizing graphic tablet. ICARS scores were significantly higher in MB patients than in PA patients. Poorer ICARS scores and impaired fine motor function correlated significantly with volume loss of CTC pathway in MB patients, but not in PA patients. Patients with pediatric post-operative cerebellar mutism syndrome showed higher loss of CTC pathway volume and were more atactic. CPC pathway volume was significantly reduced in PA patients, but not in MB patients. Neither relationship was observed between the CPC pathway and ICARS or fine motor function. There was no group difference of FA values between the patients and healthy peers. Reduced CTC pathway volumes in our cohorts were associated with severity of long-term ataxia and impaired fine motor function in survivors of MBs. We suggest that the CTC pathway seems to play a role in extent of ataxia and fine motor dysfunction after childhood cerebellar tumor treatment. DTI may be a useful tool to identify relevant structures of the CTC pathway and possibly avoid surgically induced long-term neurological sequelae.


Subject(s)
Astrocytoma/pathology , Ataxia/pathology , Cerebellar Neoplasms/pathology , Cerebellum/pathology , Cerebral Cortex/pathology , Infratentorial Neoplasms/pathology , Medulloblastoma/pathology , Adolescent , Astrocytoma/complications , Astrocytoma/diagnostic imaging , Ataxia/diagnostic imaging , Ataxia/etiology , Cancer Survivors , Cerebellar Neoplasms/complications , Cerebellar Neoplasms/diagnostic imaging , Cerebellum/diagnostic imaging , Cerebral Cortex/diagnostic imaging , Child , Child, Preschool , Diffusion Tensor Imaging , Female , Humans , Infratentorial Neoplasms/complications , Infratentorial Neoplasms/diagnostic imaging , Male , Medulloblastoma/complications , Medulloblastoma/diagnostic imaging , Neural Pathways/diagnostic imaging , Neural Pathways/pathology
SELECTION OF CITATIONS
SEARCH DETAIL
...