Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 13(2)2024 01 18.
Article in English | MEDLINE | ID: mdl-38247880

ABSTRACT

HMGB1 is a prototypical danger-associated molecular pattern (DAMP) molecule that co-localizes with amyloid beta (Aß) in the brains of patients with Alzheimer's disease. HMGB1 levels are significantly higher in the cerebrospinal fluid of patients. However, the cellular and subcellular distribution of HMGB1 in relation to the pathology of Alzheimer's disease has not yet been studied in detail. Here, we investigated whether HMGB1 protein levels in brain tissue homogenates (frontal cortex and striatum) and sera from Tg-APP/PS1 mice, along with its cellular and subcellular localization in those regions, differed. Total HMGB1 levels were increased in the frontal cortices of aged wildtype (7.5 M) mice compared to young (3.5 M) mice, whereas total HMGB1 levels in the frontal cortices of Tg-APP/PS1 mice (7.5 M) were significantly lower than those in age-matched wildtype mice. In contrast, total serum HMGB1 levels were enhanced in aged wildtype (7.5 M) mice and Tg-APP/PS1 mice (7.5 M). Further analysis indicated that nuclear HMGB1 levels in the frontal cortices of Tg-APP/PS1 mice were significantly reduced compared to those in age-matched wildtype controls, and cytosolic HMGB1 levels were also significantly decreased. Triple-fluorescence immunohistochemical analysis indicated that HMGB1 appeared as a ring shape in the cytoplasm of most neurons and microglia in the frontal cortices of 9.5 M Tg-APP/PS1 mice, indicating that nuclear HMGB1 is reduced by aging and in Tg-APP/PS1 mice. Consistent with these observations, Aß treatment of both primary cortical neuron and primary microglial cultures increased HMGB1 secretion in the media, in an Aß-dose-dependent manner. Our results indicate that nuclear HMGB1 might be translocated from the nucleus to the cytoplasm in both neurons and microglia in the brains of Tg-APP/PS1 mice, and that it may subsequently be secreted extracellularly.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , HMGB1 Protein , Aged , Animals , Humans , Mice , Alarmins , Brain , Microglia , Neurons , Disease Models, Animal
2.
Exp Mol Med ; 55(11): 2402-2416, 2023 11.
Article in English | MEDLINE | ID: mdl-37907744

ABSTRACT

Dysregulation of brain iron levels causes functional disturbances and damages neurons. Hepcidin (a peptide hormone) plays a principal role in regulating intracellular iron levels by modulating ferroportin (FPN, the only known iron exporter) through triggering its internalization and lysosomal degradation. We observed a significant and rapid iron surge in the cortices of ischemic hemispheres at 3 h after cerebral ischemia (middle cerebral artery occlusion, MCAO) that was maintained until 4 d post-MCAO. We showed upregulation of hepcidin expression in the brain as early as 3 h post-MCAO, mainly in astrocytes, and significant hepcidin accumulation in serum from 6 h post-MCAO, and these inductions were maintained for 1 day and 7 days, respectively. High mobility group box 1 (HMGB1), a prototypic danger-associated molecular pattern, accumulates markedly after transient MCAO and plays critical roles in damage aggravation via its proinflammatory effects. Here, we demonstrated that treatment with recombinant HMGB1 stimulated astrocytes to induce hepcidin expression in a TLR4- and CXCR4-dependent manner. Furthermore, hepcidin-mediated intracellular iron accumulation in neurons was confirmed by an experiment using N-methyl-D-aspartate (NMDA)-conditioned medium-treated primary astrocytes and fresh primary cortical neurons treated with hepcidin-containing astrocyte-conditioned medium. Moreover, HMGB1-mediated local hepcidin upregulation and subsequent local iron surge were found to cause ferroptosis in the postischemic brain, which was suppressed by the functional blocking of HMGB1 using intranasally administered HMGB1 A box or anti-HMGB1 antibody. These findings show that HMGB1 serves as a ferroptosis inducer by upregulating hepcidin in astrocytes and thus aggravates acute damage in the postischemic brain.


Subject(s)
Ferroptosis , HMGB1 Protein , Rats , Animals , Astrocytes/metabolism , Rats, Sprague-Dawley , Up-Regulation , Hepcidins/genetics , Hepcidins/metabolism , Culture Media, Conditioned/metabolism , Brain/metabolism
3.
Cells ; 11(15)2022 08 04.
Article in English | MEDLINE | ID: mdl-35954253

ABSTRACT

The high mobility group box 1 (HMGB1), a well-known danger-associated molecule pattern (DAMP) molecule, is a non-histone chromosomal protein localized in the nucleus under normal physiological conditions. HMGB1 exhibits diverse functions depending on its subcellular location. In the present study, we investigated the role of HMGB1-induced autophagy in the lipopolysaccharide (LPS)-treated BV2 microglial cell line in mediating the transition between the inflammatory and autophagic function of the nucleotide-binding oligomerization domain-containing 2 (NOD2), a cytoplasmic pattern-recognition receptor. The induction of the microtubule-associated protein 1 light chain 3 (LC3), an autophagy biomarker, was detected slowly in BV2 cells after the LPS treatment, and peak induction was detected at 12 h. Under these conditions, NOD2 level was significantly increased and the binding between HMGB1 and NOD2 and between HMGB1 and ATG16L1 was markedly enhanced and the temporal profiles of the LC3II induction and HMGB1-NOD2 and HMGB1-ATG16L1 complex formation coincided with the cytosolic accumulation of HMGB1. The LPS-mediated autophagy induction was significantly suppressed in BV2 cells after HMGB1 or NOD2 knock-down (KD), indicating that HMGB1 contributes to NOD2-mediated autophagy induction in microglia. Moreover, NOD2-RIP2 interaction-mediated pro-inflammatory cytokine induction and NF-κB activity were significantly enhanced in BV2 cells after HMGB1 KD, indicating that HMGB1 plays a critical role in the modulation of NOD2 function between pro-inflammation and pro-autophagy in microglia. The effects of the cell-autonomous pro-autophagic pathway operated by cytoplasmic HMGB1 may be beneficial, whereas those from the paracrine pro-inflammatory pathway executed by extracellularly secreted HMGB1 can be detrimental. Thus, the overall functional significance of HMGB1-induced autophagy is different, depending on its temporal activity.


Subject(s)
HMGB1 Protein , Microglia , Alarmins/metabolism , Autophagy , HMGB1 Protein/metabolism , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Microglia/metabolism , NF-kappa B/metabolism
4.
Calcif Tissue Int ; 97(6): 624-33, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26319677

ABSTRACT

The aim of this study was to evaluate the effects of a supplement containing Pueraria lobata/Rehmannia glutinosa (PR) root extracts on bone turnover in ovariectomized (OVX) rats (a model for postmenopausal osteoporosis). Female Sprague-Dawley rats (8 weeks old) were randomized into eight groups: sham-operated rats with low-fat control diet + vehicle, OVX rats with low-fat control diet + vehicle, OVX rats with high-fat diet (HFD) + vehicle, OVX rats with HFD + vehicle + exercise, OVX rats with HFD + PR (400 mg/kg body weight/day p.o.), OVX rats with HFD + PR + exercise, OVX rats with HFD + 17ß-estradiol (0.5 mg/kg body weight/day p.o.), OVX rats with HFD + 17ß-estradiol + exercise. Bone microarchitecture, bone turnover markers (e.g., plasma alkaline phosphatase and osteocalcin), expressions of osteogenic and resorptive gene markers in the bone were measured. Eight weeks of PR and/or aerobic exercise improved cortical microarchitecture of the femur and decreased markers of bone turnover and expression of skeletal osteoclastogenic genes in the femur. PR supplementation combined with exercise preserved bone loss induced by estrogen deficiency and should be investigated further as an alternative to hormone replacement therapy for preventing osteoporosis in postmenopausal women.


Subject(s)
Bone Density/drug effects , Osteoporosis, Postmenopausal/prevention & control , Phytotherapy/methods , Plant Extracts/pharmacology , Animals , Bone Remodeling/drug effects , Diet, High-Fat , Dietary Supplements , Disease Models, Animal , Female , Humans , Ovariectomy , Plant Roots , Pueraria , Rats , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Rehmannia , X-Ray Microtomography
5.
Can J Microbiol ; 59(8): 556-62, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23898999

ABSTRACT

Pseudomonas chlororaphis O6 possesses many beneficial traits involved in biocontrol of plant diseases. In this paper, we examined the effect of a mutation in rpoS encoding a stress-related alternative sigma factor to better understand the regulation of these traits. Biochemical studies indicated that production of acyl homoserine lactones was altered and phenazine was increased in the P. chlororaphis O6 rpoS mutant. The rpoS mutation reduced hydrogen cyanide levels, but the rpoS mutant still displayed a level of in vitro antifungal activity against Fusarium graminearum and Alternaria alternata. Tomato root colonization by the rpoS mutant was lower than that by the wild type at 5, 7, and 13 days after inoculation. The rpoS mutant was less effective than the wild type in induction of systemic resistance to two foliar pathogens after root inoculation of the tomato plants. Our findings demonstrate that the stationary-phase sigma factor RpoS regulates production of several key factors involved in the biocontrol potential of P. chlororaphis O6, some independently of the global regulator GacS.


Subject(s)
Bacterial Proteins/metabolism , Pseudomonas/genetics , Pseudomonas/metabolism , Sigma Factor/metabolism , Acyl-Butyrolactones/metabolism , Antifungal Agents/metabolism , Bacterial Proteins/genetics , Fusarium/growth & development , Hydrogen Cyanide/metabolism , Solanum lycopersicum/microbiology , Microbial Interactions , Mutation/genetics , Phenazines/metabolism , Plant Roots/microbiology , Sigma Factor/genetics , Transcription Factors/metabolism
6.
Plant Pathol J ; 29(3): 323-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-25288959

ABSTRACT

The stationary-phase sigma factor, RpoS, influences the expression of factors important in survival of Pseudomonas chlororaphis O6 in the rhizosphere. A partial proteomic profile of a rpoS mutant in P. chlororaphis O6 was conducted to identify proteins under RpoS regulation. Five of 14 differentially regulated proteins had unknown roles. Changes in levels of proteins in P. chlororaphis O6 rpoS mutant were associated with iron metabolism, and protection against oxidative stress. The P. chlororaphis O6 rpoS mutant showed increased production of a pyoverdine-like siderophore, indole acetic acid, and altered isozyme patterns for peroxidase, catalase and superoxide dismutase. Consequently, sensitivity to hydrogen peroxide exposure increased in the P. chlororaphis O6 rpoS mutant, compared with the wild type. Taken together, RpoS exerted regulatory control over factors important for the habitat of P. chlororaphis O6 in soil and on root surfaces. The properties of several of the proteins in the RpoS regulon are currently unknown.

7.
Ann Dermatol ; 22(2): 191-3, 2010 May.
Article in English | MEDLINE | ID: mdl-20548911

ABSTRACT

Neurofibromatosis is a systemic hereditary disorder with varied manifestations in bone, soft tissue, the nervous system and skin. Cutaneous manifestations of neurofibromatosis are characterized by café-au-lait macules, multiple neurofibromas, Lisch nodules and intertriginous freckling. Some benign or malignant tumors such as juvenile xanthogranuloma, pheochromocytoma, and malignant melanoma can accompany neurofibromatosis. But, in the English literature, no case of eccrine spiradenoma associated with neurofibromatosis has been reported. Eccrine spiradenoma is a benign uncommon neoplasm of skin adnexa. It presents as a painful, slow-growing and solitary nodule on the head or upper trunk. Here, we report a rare case of eccrine spiradenoma in a patient with neurofibromatosis.

SELECTION OF CITATIONS
SEARCH DETAIL
...