Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(2)2022 Jan 13.
Article in English | MEDLINE | ID: mdl-35057299

ABSTRACT

Coal-fired power plants operating under Korea's standard supercritical pressure operate in a high-temperature environment, with steam temperatures reaching 540 °C. A standard coal-fired power plant has a 30-year design life, and lifespan diagnosis is performed on facilities that have operated for more than 100,000 h or 20 years. Visual inspection, thickness measurements, and hardness measurements in the field are used to assess the degree of material degradation at the time of diagnosis. In this study, aging degradation was assessed using an electromagnetic acoustic transducer to measure the change in transverse ultrasonic propagation speed, and the results were compared to microstructural analysis and tensile test results. Based on the experimental results, it was found that the boiler tube exposed to a high-temperature environment during long-term boiler operation was degraded and damaged, the ultrasonic wave velocity was reduced, and the microstructural grains were coarsened. It was also confirmed through tensile testing that the tensile and yield strengths increased with degradation. Our findings prove that the degree of change in mechanical properties as a function of the material's degradation state is proportional to the change in ultrasonic wave velocity.

2.
Sensors (Basel) ; 19(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013800

ABSTRACT

Pipe wall thinning and leakage due to flow accelerated corrosion (FAC) are important safety concerns for nuclear power plants. A shear horizontal ultrasonic pitch/catch technique was developed for the accurate monitoring of the pipe wall-thickness. A solid couplant should be used to ensure high quality ultrasonic signals for a long operation time at an elevated temperature. We developed a high temperature ultrasonic thickness monitoring method using a pair of shear horizontal transducers and waveguide strips. A computer program for on-line monitoring of the pipe thickness at high temperature was also developed. Both a conventional buffer rod pulse-echo type and a developed shear horizontal ultrasonic waveguide type for a high temperature thickness monitoring system were successfully installed to test a section of the FAC proof test facility. The overall measurement error was estimated as ±15 µm during a cycle ranging from room temperature to 150 °C. The developed waveguide system was stable for about 3300 h and sensitive to changes in the internal flow velocity. This system can be used for high temperature thickness monitoring in all industries as well as nuclear power plants.

3.
Materials (Basel) ; 12(6)2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30875883

ABSTRACT

During inspection of piping in nuclear power plants or other industries, it is difficult to implement conventional nondestructive techniques due to limited accessibility or obstacles such as pipes with insulation, pipes buried underground, structural complexity, or radiation environments. In addition, since the defects mainly occur in the weld region or support area, it is not easy to separate defect signals from those of structural components. To solve these problems, we developed a technique to detect and monitor the formation and growth of defects, using a magnetostrictive guided wave sensor. This sensor has advantages (such as sharp and clear signal patterns and ability to easily eliminate the signal from the geometric structure) over the conventional piezoelectric transducer. To verify our technique, signals from actual pipe welds with defects were acquired and processed with our phase matching/subtraction program. The proposed technique shows a superior capability for detection and monitoring of defects, compared to the conventional guided wave methods.

SELECTION OF CITATIONS
SEARCH DETAIL
...