Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 254(Pt 3): 127797, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949272

ABSTRACT

Biodegradable orthopedic implants are essential for restoring the physiological structure and function of bone tissue while ensuring complete degradation after recovery. Polylactic acid (PLA), a biodegradable polymer, is considered a promising material due to its considerable mechanical properties and biocompatibility. However, further improvements are necessary to enhance the mechanical strength and bioactivity of PLA for reliable load-bearing orthopedic applications. In this study, a multifunctional PLA-based composite was fabricated by incorporating tricalcium phosphate (TCP) microspheres and magnesium (Mg) particles homogenously at a volume fraction of 40 %. This approach aims to enhance mechanical strength, accelerate pore generation, and improve biological and antibacterial performance. Mg content was incorporated into the composite at varying values of 1, 3, and 5 vol% (referred to as PLA/TCP-1 Mg, PLA/TCP-3 Mg, and PLA/TCP-5 Mg, respectively). The compressive strength and stiffness were significantly enhanced in all composites, reaching 87.7, 85.9, and 84.1 MPa, and 2.7, 3.0, and 3.1 GPa, respectively. The degradation test indicated faster elimination of the reinforcers as the Mg content increased, resulting in accelerated pore generation to induce enhanced osseointegration. Because PLA/TCP-3 Mg and PLA/TCP-5 Mg exhibited cracks in the PLA matrix due to rapid corrosion of Mg forming corrosion byproducts, to optimize the Mg particle content, PLA/TCP-1 Mg was selected for further evaluation. As determined by in vitro biological and antibacterial testing, PLA/TCP-1 Mg showed enhanced bioactivity with pre-osteoblast cells and exhibited antibacterial properties by suppressing bacterial colonization. Overall, the multifunctional PLA/TCP-Mg composite showed improved mechanobiological performance, making it a promising material for biodegradable orthopedic implants.


Subject(s)
Magnesium , Osseointegration , Magnesium/pharmacology , Magnesium/chemistry , Polyesters/pharmacology , Polyesters/chemistry , Anti-Bacterial Agents/pharmacology , Materials Testing , Calcium Phosphates/pharmacology , Calcium Phosphates/chemistry , Biocompatible Materials/pharmacology , Biocompatible Materials/chemistry
2.
Materials (Basel) ; 16(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38068169

ABSTRACT

Hydrogen generation through the hydrolysis of aluminum alloys has attracted significant attention because it generates hydrogen directly from alkaline water without the need for hydrogen storage technology. The hydrogen generation rate from the hydrolysis of aluminum in alkaline water is linearly proportional to its corrosion rate. To accelerate the corrosion rate of the aluminum alloy, we designed Al-Ni alloys by continuously precipitating an electrochemically noble Al3Ni phase along the grain boundaries. The Al-0.5~1 wt.% Ni alloys showed an excellent hydrogen generation rate of 16.6 mL/cm2·min, which is about 6.4 times faster than that of pure Al (2.58 mL/cm2·min). This excellent performance was achieved through the synergistic effects of galvanic and intergranular corrosion on the hydrolysis of Al. By raising the solution temperature to 50 °C, the optimal rate of hydrogen generation of Al-1 wt.% Ni in 10 wt.% NaOH solutions at 30 °C can be further increased to 54.5 mL/cm2·min.

3.
Biomater Adv ; 152: 213523, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37336010

ABSTRACT

Biodegradability, bone-healing rate, and prevention of bacterial infection are critical factors for orthopedic implants. Polylactic acid (PLA) is a good candidate biodegradable material; however, it has insufficient mechanical strength and bioactivity for orthopedic implants. Magnesium (Mg), has good bioactivity, biodegradability, and sufficient mechanical properties, similar to that of bone. Moreover, Mg has an inherent antibacterial property via a photothermal effect, which generates localized heat, thus preventing bacterial infection. Therefore, Mg is a good candidate material for PLA composites, to improve their mechanical and biological performance and add an antibacterial property. Herein, we fabricated an antibacterial PLA/Mg composite for enhanced mechanical and biological performance with an antibacterial property for application as biodegradable orthopedic implants. The composite was fabricated with 15 and 30 vol% of Mg homogeneously dispersed in PLA without the generation of a defect using a high-shear mixer. The composites exhibited an enhanced compressive strength of 107.3 and 93.2 MPa, and stiffness of 2.3 and 2.5 GPa, respectively, compared with those of pure PLA which were 68.8 MPa and 1.6 GPa, respectively. Moreover, the PLA/Mg composite at 15 vol% Mg exhibited significant improvement of biological performance in terms of enhanced initial cell attachment and cell proliferation, whereas the composite at 30 vol% Mg showed deteriorated cell proliferation and differentiation because of the rapid degradation of the Mg particles. In turn, the PLA/Mg composites exerted an antibacterial effect based on the inherent antibacterial property of Mg as well as the photothermal effect induced by near-infrared (NIR) treatment, which can minimize infection after implantation surgery. Therefore, antibacterial PLA/Mg composites with enhanced mechanical and biological performance may be a candidate material with great potential for biodegradable orthopedic implants.


Subject(s)
Magnesium , Polyesters , Magnesium/pharmacology , Absorbable Implants , Anti-Bacterial Agents/pharmacology
4.
Adv Sci (Weinh) ; 10(17): e2300816, 2023 06.
Article in English | MEDLINE | ID: mdl-37076933

ABSTRACT

Chronic wounds in diabetic patients are challenging because their prolonged inflammation makes healing difficult, thus burdening patients, society, and health care systems. Customized dressing materials are needed to effectively treat such wounds that vary in shape and depth. The continuous development of 3D-printing technology along with artificial intelligence has increased the precision, versatility, and compatibility of various materials, thus providing the considerable potential to meet the abovementioned needs. Herein, functional 3D-printing inks comprising DNA from salmon sperm and DNA-induced biosilica inspired by marine sponges, are developed for the machine learning-based 3D-printing of wound dressings. The DNA and biomineralized silica are incorporated into hydrogel inks in a fast, facile manner. The 3D-printed wound dressing thus generates provided appropriate porosity, characterized by effective exudate and blood absorption at wound sites, and mechanical tunability indicated by good shape fidelity and printability during optimized 3D printing. Moreover, the DNA and biomineralized silica act as nanotherapeutics, enhancing the biological activity of the dressings in terms of reactive oxygen species scavenging, angiogenesis, and anti-inflammation activity, thereby accelerating acute and diabetic wound healing. These bioinspired 3D-printed hydrogels produce using a DNA-induced biomineralization strategy are an excellent functional platform for clinical applications in acute and chronic wound repair.


Subject(s)
Diabetes Mellitus , Hydrogels , Male , Humans , Hydrogels/pharmacology , Artificial Intelligence , Biomineralization , Semen , Wound Healing , Printing, Three-Dimensional
5.
ACS Appl Mater Interfaces ; 14(43): 48598-48608, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36256595

ABSTRACT

The kinetic-sluggish oxygen evolution reaction (OER) is the main obstacle in electrocatalytic water splitting for sustainable production of hydrogen energy. Efficient water electrolysis can be ensured by lowering the overpotential of the OER by developing highly active catalysts. In this study, a controlled electrophoretic deposition strategy was used to develop a binder-free spinel oxide nanoparticle-coated Ni foam as an efficient electrocatalyst for water oxidation. Oxygen evolution was successfully promoted using the CoFe2O4 catalyst, and it was optimized by modulating the electrophoretic parameters. When optimized, CoFe2O4 nanoparticles presented more active catalytic sites, superior charge transfer, increased ion diffusion, and favorable reaction kinetics, which led to a small overpotential of 287 mV for a current density of 10 mA cm-2, with a small Tafel slope of 43 mV dec-1. Moreover, the CoFe2O4 nanoparticle electrode exhibited considerable long-term stability over 100 h without detectable activity loss. The results demonstrate promising potential for large-scale water splitting using Earth-abundant oxide materials via a simple and cheap fabrication process.

7.
Nano Lett ; 18(4): 2450-2458, 2018 04 11.
Article in English | MEDLINE | ID: mdl-29578723

ABSTRACT

Bimetallic PtNi nanoparticles have been considered as a promising electrocatalyst for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells (PEMFCs) owing to their high catalytic activity. However, under typical fuel cell operating conditions, Ni atoms easily dissolve into the electrolyte, resulting in degradation of the catalyst and the membrane-electrode assembly (MEA). Here, we report gallium-doped PtNi octahedral nanoparticles on a carbon support (Ga-PtNi/C). The Ga-PtNi/C shows high ORR activity, marking an 11.7-fold improvement in the mass activity (1.24 A mgPt-1) and a 17.3-fold improvement in the specific activity (2.53 mA cm-2) compared to the commercial Pt/C (0.106 A mgPt-1 and 0.146 mA cm-2). Density functional theory calculations demonstrate that addition of Ga to octahedral PtNi can cause an increase in the oxygen intermediate binding energy, leading to the enhanced catalytic activity toward ORR. In a voltage-cycling test, the Ga-PtNi/C exhibits superior stability to PtNi/C and the commercial Pt/C, maintaining the initial Ni concentration and octahedral shape of the nanoparticles. Single cell using the Ga-PtNi/C exhibits higher initial performance and durability than those using the PtNi/C and the commercial Pt/C. The majority of the Ga-PtNi nanoparticles well maintain the octahedral shape without agglomeration after the single cell durability test (30,000 cycles). This work demonstrates that the octahedral Ga-PtNi/C can be utilized as a highly active and durable ORR catalyst in practical fuel cell applications.

8.
Adv Mater ; 26(28): 4880-7, 2014 Jul 23.
Article in English | MEDLINE | ID: mdl-24740465

ABSTRACT

A flexible single-crystalline PMN-PT piezoelectric energy harvester is demonstrated to achieve a self-powered artificial cardiac pacemaker. The energy-harvesting device generates a short-circuit current of 0.223 mA and an open-circuit voltage of 8.2 V, which are enough not only to meet the standard for charging commercial batteries but also for stimulating the heart without an external power source.


Subject(s)
Electric Power Supplies , Lead/chemistry , Micro-Electrical-Mechanical Systems/instrumentation , Niobium/chemistry , Oxides/chemistry , Pacemaker, Artificial , Prostheses and Implants , Titanium/chemistry , Crystallization , Elastic Modulus , Energy Transfer , Equipment Design , Equipment Failure Analysis , Materials Testing
SELECTION OF CITATIONS
SEARCH DETAIL
...