Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(40): eabj8590, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34597133

ABSTRACT

Solid oxide cells (SOCs) are promising sustainable and efficient electrochemical energy conversion devices. The application of a bilayer electrolyte comprising wide electrolytic oxide and highly conductive oxide is essential to lower the operating temperatures while maintaining high performance. However, a structurally and chemically ideal bilayer has been unattainable through cost-effective conventional ceramic processes. Here, we describe a strategy of naturally diffused sintering aid allowing the fabrication of defect-free doped-zirconia/doped-ceria bilayer electrolyte with full density and reduced interdiffusion layer at lower sintering temperature owing to the supply of small but appropriate amount of sintering aid from doped zirconia to doped ceria that makes the thermal shrinkages of both layers perfectly congruent. The resulting SOCs exhibit a minimal ohmic loss of 0.09 ohm cm2 and remarkable performances in both fuel cell (power density exceeding 1.3 W cm−2) and electrolysis (current density of −1.27 A cm−2 at 1.3 V) operations at 700°C.

2.
Sci Rep ; 7(1): 16586, 2017 11 29.
Article in English | MEDLINE | ID: mdl-29185484

ABSTRACT

The crystal grain size of CH3NH3PbI3 (MAPbI3) organic-inorganic hybrid perovskite (OHP) film was controllable in the range from ~60 nm to ~600 nm by non-solvents inter-diffusion controlled crystallization process in dripping crystallization method for the formation of perovskite film. The MAPbI3 OHP non-volatile resistive random access memory with ~60 nm crystal grain size exhibited >0.1 TB/in2 storage capacity, >600 cycles endurance, >104 s data retention time, ~0.7 V set, and ~-0.61 V re-set bias voltage.

3.
J Phys Chem Lett ; 6(12): 2355-62, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26266617

ABSTRACT

We fabricated a mesoporous perovskite solar cell with a ∼14% conversion efficiency, and we investigated its beneficial grain boundary properties of the perovskite solar cells through the use of scanning probe microscopy. The CH3NH3Pb(I0.88,Br0.12)3 showed a significant potential barrier bending at the grain boundary and induced passivation. The potential difference value in the x = 0.00 sample is ∼50 mV, and the distribution of the positive potential is lower than that of the x = 0.12 sample. We also investigated the polarization and hysteretic properties of the perovskite thin films by measuring the local piezoresponse. Specifically, the charged grain boundaries play a beneficial role in electron-hole depairing and in suppressing recombination in order to realize high-efficiency perovskite solar cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...