Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 17(2): 362-374, 2023 04.
Article in English | MEDLINE | ID: mdl-37028306

ABSTRACT

This study proposes a novel brain-stimulated mouse experiment system which is insensitive to the variations in the position and orientation of a mouse. This is achieved by the proposed novel crown-type dual coil system for magnetically coupled resonant wireless power transfer (MCR-WPT). In the detailed system architecture, the transmitter coil consists of a crown-type outer coil and a solenoid-type inner coil. The crown-type coil was constructed by repeating the rising and falling at an angle of 15 ° for each side which creates the H-field diverse direction. The solenoid-type inner coil creates a magnetic field distributed uniformly along the location. Therefore, despite using two coils for the Tx system, the system generates the H-field insensitive to the variations in the position and angle of the receiver system. The receiver is comprised of the receiving coil, rectifier, divider, LED indicator, and the MMIC that generates the microwave signal for stimulating the brain of the mouse. The system resonating at 2.84 MHz was simplified to easy fabrication by constructing 2 transmitter coils and 1 receiver coil. A peak PTE of 19.6% and a PDL of 1.93 W were achieved, and the system also achieved an operation time ratio of 89.55% in vivo experiments. As a result, it is confirmed that experiments could proceed for approximately 7 times longer through the proposed system compared to the conventional dual coil system.


Subject(s)
Microwaves , Wireless Technology , Mice , Animals , Electric Power Supplies
2.
Sensors (Basel) ; 20(24)2020 Dec 21.
Article in English | MEDLINE | ID: mdl-33371221

ABSTRACT

This paper proposes a novel design for a chip-on-probe with the aim of overcoming the heat dissipation effect during brain stimulations using modulated microwave signals. The temperature of the stimulus chip during normal operation is generally 40 °C-60 °C, which is sufficient to cause unintended temperature effects during stimulation. This effect is particularly fatal in brain stimulation applications that require repeated stimulation. This paper proposes, for the first time, a topology that vertically separates the stimulus chip generating the stimulus signal and the probe delivering the signal into the brain to suppress the heat transfer while simultaneously minimizing the radio frequency (RF) transmission loss. As the proposed chip-on-probe should be attached to the head of a small animal, an auxiliary board with a heat sink was carefully designed considering the weight that does not affect the behavior experiment. When the transition structures are properly designed, a heat sink can be mounted to maximize the cooling effect, reducing the temperature by more than 13 °C in a simulation when the heat generated by the chip is transferred to the brain, while the transition from the chip to the probe experiences a loss of 1.2 dB. Finally, the effectiveness of the proposed design is demonstrated by fabricating a chip with the 0.28 µm silicon-on-insulator (SOI) complementary metal-oxide-semiconductor (CMOS) process and a probe with a RT6010 printed-circuit board (PCB), showing a temperature reduction of 49.8 °C with a maximum output power of 11 dBm. In the proposed chip-on-probe device, the temperature formed in the area in contact with the brain is measured at 31.1 °C.


Subject(s)
Brain , Hot Temperature , Microwaves , Animals , Radio Waves , Semiconductors , Temperature
3.
Sensors (Basel) ; 19(18)2019 Sep 14.
Article in English | MEDLINE | ID: mdl-31540121

ABSTRACT

This paper proposes a novel design approach for a thin lens with the aim of overcoming fineness limits in the commercial millimeter wave printed circuit board (PCB) manufacturing process. The PCB manufacturing process typically does not allow the fabrication of metallic patterns with a gap and width of less than 100 µm. This hampers expanding thin lens technology to 5G commercial applications, especially when such technology is considered for 60 GHz or higher frequency, which requires a finer gap and width of metallic traces. This paper proposes that problematic process conditions can be mitigated when a lens is designed by establishing single-polarized lumped element models where larger capacitance and inductance values can be obtained for the same patch and grid unit cells. While the proposed design technique is more advantageous at higher target frequencies, a 60 GHz application and a wireless backhaul system is selected because of a limited range of frequencies that can be measured by an available vector network analyzer. The required gap or width of metallic traces can be widened significantly by using the proposed single-polarized unit cells to acquire the same in-plane capacitance or inductance. This enables the lens operating at higher-frequency under the process limits in fabricable fine traces. Finally, the effectiveness of the simulated design procedure is demonstrated by fabricating a 60 GHz thin lens that can achieve a gain enhancement of 16 dB for a 4 × 4 patch antenna array with a gain of 16.5 dBi.

SELECTION OF CITATIONS
SEARCH DETAIL
...