Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Ind Microbiol Biotechnol ; 50(1)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-38093455

ABSTRACT

Two new macrocyclic secondary metabolites, glycosyl-migrastatin (1) and 5-hydroxy-migrastatin (2), were isolated from a gut bacterium Kitasatospora sp. JL24 in dung beetle Onthophagus lenzii. Based on a comprehensive analysis of the nuclear magnetic resonance (NMR), MS, and UV spectroscopic data, the planar structures of 1 and 2 were successfully identified as new derivatives of migrastatin. Compound 1 was the first glycosylated member of the migrastatin family. The absolute configuration of the sugar moiety was determined to be d-glucose through the analysis of coupling constants and ROESY correlations, followed by chemical derivatization and chromatographic comparison with authentic d- and l-glucose. Compound 2, identified as 5-hydroxy-migrastatin possessing an additional hydroxy group with a previously unreported chiral center, was assigned using Mosher's method through 19F NMR chemical shifts and confirmed with the modified Mosher's method. Genomic analysis of Kitasatospora sp. strain JL24 revealed a putative biosynthetic pathway involving an acyltransferase-less type I polyketide synthase biosynthetic gene cluster. ONE-SENTENCE SUMMARY: Two secondary metabolites, glycosyl-migrastatin (1) and 5-hydroxy-migrastatin (2), were discovered from the gut bacterium Kitasatospora sp. JL24 in the dung beetle Onthophagus lenzii.


Subject(s)
Macrolides , Piperidones , Magnetic Resonance Spectroscopy , Bacteria , Molecular Structure
2.
J Korean Med Sci ; 31(8): 1224-30, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27478332

ABSTRACT

EGFR and KRAS mutations are two of the most common mutations that are present in lung cancer. Screening and detecting these mutations are of issue these days, and many different methods and tissue samples are currently used to effectively detect these two mutations. In this study, we aimed to evaluate the testing for EGFR and KRAS mutations by pyrosequencing method, and compared the yield of cytology versus histology specimens in a consecutive series of patients with lung cancer. We retrospectively reviewed EGFR and KRAS mutation results of 399 (patients with EGFR mutation test) and 323 patients (patients with KRAS mutation test) diagnosed with lung cancer in Konkuk University Medical Center from 2008 to 2014. Among them, 60 patients had received both EGFR and KRAS mutation studies. We compared the detection rate of EGFR and KRAS tests in cytology, biopsy, and resection specimens. EGFR and KRAS mutations were detected in 29.8% and 8.7% of total patients, and the positive mutation results of EGFR and KRAS were mutually exclusive. The detection rate of EGFR mutation in cytology was higher than non-cytology (biopsy or resection) materials (cytology: 48.5%, non-cytology: 26.1%), and the detection rate of KRAS mutation in cytology specimens was comparable to non-cytology specimens (cytology: 8.3%, non-cytology: 8.7%). We suggest that cytology specimens are good alternatives that can readily substitute tissue samples for testing both EGFR and KRAS mutations. Moreover, pyrosequencing method is highly sensitive in detecting EGFR and KRAS mutations in lung cancer patients.


Subject(s)
Carcinoma, Non-Small-Cell Lung/pathology , ErbB Receptors/genetics , Lung Neoplasms/pathology , ras Proteins/genetics , Adult , Aged , Aged, 80 and over , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , DNA Mutational Analysis , DNA, Neoplasm/chemistry , DNA, Neoplasm/metabolism , ErbB Receptors/metabolism , Female , Humans , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Male , Middle Aged , Mutation , Retrospective Studies , ras Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...