Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neuropharmacology ; 221: 109292, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36244413

ABSTRACT

Antiseizure medication is the mainstay of treatment for seizures, and adjunctive therapy is widely used to achieve adequate seizure control in patients with epilepsy who fail to respond to the first monotherapy. The newly developed antiepileptic drug cenobamate (YKP3089) as an adjunctive therapy improved seizure control in patients with uncontrolled focal seizures. Cenobamate is thought to reduce neuronal excitability through action on multiple targets, including GABA A receptors (GABAARs) and voltage-gated sodium channels. However, its effects on brain function and synaptic plasticity are unclear. Here, we explored the behavioral, synaptic, and cellular actions of cenobamate. Cenobamate influenced novel object recognition, object location memory, and Morris water maze performance in mice. Cenobamate enhanced inhibitory postsynaptic potentials by prolonging inhibitory postsynaptic current (IPSC) decay without affecting presynaptic GABA release or the peak amplitude of IPSCs. In addition, cenobamate suppressed hippocampal excitatory synaptic transmission by reducing the excitability of Schaffer collaterals and interfered with the induction of long-term potentiation. A reduction in neuronal excitability induced by cenobamate was associated with an elevation of action potential (AP) threshold, and which progressively increased in later APs during repetitive firing, indicating the activity-dependent modulation of neuronal sodium currents. Cenobamate suppressed neuronal excitability under the condition that GABAergic neurotransmission is excitatory, and administration of cenobamate rapidly enhanced the phosphorylation of eukaryotic elongation factor 2 in the hippocampus of adult and neonatal mice. Collectively, these results suggest that the combined action of cenobamate on sodium currents and GABAAR-mediated synapse responses results in reduced excitability in neurons.


Subject(s)
Seizures , Synaptic Transmission , Mice , Animals , Seizures/drug therapy , Sodium , Cognition , gamma-Aminobutyric Acid/therapeutic use
2.
Exp Mol Med ; 54(8): 1109-1124, 2022 08.
Article in English | MEDLINE | ID: mdl-35922532

ABSTRACT

Inborn errors of metabolism (IEMs) are common causes of neurodevelopmental disorders, including microcephaly, hyperactivity, and intellectual disability. However, the synaptic mechanisms of and pharmacological interventions for the neurological complications of most IEMs are unclear. Here, we report that metabolic dysfunction perturbs neuronal NMDA receptor (NMDAR) homeostasis and that the restoration of NMDAR signaling ameliorates neurodevelopmental and cognitive deficits in IEM model mice that lack aminopeptidase P1. Aminopeptidase P1-deficient (Xpnpep1-/-) mice, with a disruption of the proline-specific metalloprotease gene Xpnpep1, exhibit hippocampal neurodegeneration, behavioral hyperactivity, and impaired hippocampus-dependent learning. In this study, we found that GluN1 and GluN2A expression, NMDAR activity, and the NMDAR-dependent long-term potentiation (LTP) of excitatory synaptic transmission were markedly enhanced in the hippocampi of Xpnpep1-/- mice. The exaggerated NMDAR activity and NMDAR-dependent LTP were reversed by the NMDAR antagonist memantine. A single administration of memantine reversed hyperactivity in adult Xpnpep1-/- mice without improving learning and memory. Furthermore, chronic administration of memantine ameliorated hippocampal neurodegeneration, hyperactivity, and impaired learning and memory in Xpnpep1-/- mice. In addition, abnormally enhanced NMDAR-dependent LTP and NMDAR downstream signaling in the hippocampi of Xpnpep1-/- mice were reversed by chronic memantine treatment. These results suggest that the metabolic dysfunction caused by aminopeptidase P1 deficiency leads to synaptic dysfunction with excessive NMDAR activity, and the restoration of synaptic function may be a potential therapeutic strategy for the treatment of neurological complications related to IEMs.


Subject(s)
Memantine , Receptors, N-Methyl-D-Aspartate , Aminopeptidases/genetics , Aminopeptidases/metabolism , Animals , Hippocampus/metabolism , Memantine/pharmacology , Memantine/therapeutic use , Mice , N-Methylaspartate , Receptors, N-Methyl-D-Aspartate/genetics , Receptors, N-Methyl-D-Aspartate/metabolism
3.
Mol Brain ; 14(1): 142, 2021 09 15.
Article in English | MEDLINE | ID: mdl-34526091

ABSTRACT

Assessment of neural activity in the specific brain area is critical for understanding the circuit mechanisms underlying altered brain function and behaviors. A number of immediate early genes (IEGs) that are rapidly transcribed in neuronal cells in response to synaptic activity have been used as markers for neuronal activity. However, protein detection of IEGs requires translation, and the amount of newly synthesized gene product is usually insufficient to detect using western blotting, limiting their utility in western blot analysis of brain tissues for comparison of basal activity between control and genetically modified animals. Here, we show that the phosphorylation status of eukaryotic elongation factor-2 (eEF2) rapidly changes in response to synaptic and neural activities. Intraperitoneal injections of the GABA A receptor (GABAAR) antagonist picrotoxin and the glycine receptor antagonist brucine rapidly dephosphorylated eEF2. Conversely, potentiation of GABAARs or inhibition of AMPA receptors (AMPARs) induced rapid phosphorylation of eEF2 in both the hippocampus and forebrain of mice. Chemogenetic suppression of hippocampal principal neuron activity promoted eEF2 phosphorylation. Novel context exploration and acute restraint stress rapidly modified the phosphorylation status of hippocampal eEF2. Furthermore, the hippocampal eEF2 phosphorylation levels under basal conditions were reduced in mice exhibiting epilepsy and abnormally enhanced excitability in CA3 pyramidal neurons. Collectively, the results indicated that eEF2 phosphorylation status is sensitive to neural activity and the ratio of phosphorylated eEF2 to total eEF2 could be a molecular signature for estimating neural activity in a specific brain area.


Subject(s)
Brain/physiology , Eukaryotic Initiation Factor-2/metabolism , Nerve Tissue Proteins/metabolism , Animals , CA3 Region, Hippocampal/metabolism , Genes, Reporter , Mice , Muscimol/pharmacology , Phosphorylation/drug effects , Picrotoxin/pharmacology , Prosencephalon/metabolism , Protein Processing, Post-Translational/drug effects , Pyramidal Cells/metabolism , Quinoxalines/pharmacology , Restraint, Physical , Stress, Physiological/physiology , Strychnine/analogs & derivatives , Strychnine/pharmacology
4.
Sci Rep ; 11(1): 932, 2021 01 13.
Article in English | MEDLINE | ID: mdl-33441619

ABSTRACT

Inborn errors of metabolism are often associated with neurodevelopmental disorders and brain injury. A deficiency of aminopeptidase P1, a proline-specific endopeptidase encoded by the Xpnpep1 gene, causes neurological complications in both humans and mice. In addition, aminopeptidase P1-deficient mice exhibit hippocampal neurodegeneration and impaired hippocampus-dependent learning and memory. However, the molecular and cellular changes associated with hippocampal pathology in aminopeptidase P1 deficiency are unclear. We show here that a deficiency of aminopeptidase P1 modifies the glial population and neuronal excitability in the hippocampus. Microarray and real-time quantitative reverse transcription-polymerase chain reaction analyses identified 14 differentially expressed genes (Casp1, Ccnd1, Myoc, Opalin, Aldh1a2, Aspa, Spp1, Gstm6, Serpinb1a, Pdlim1, Dsp, Tnfaip6, Slc6a20a, Slc22a2) in the Xpnpep1-/- hippocampus. In the hippocampus, aminopeptidase P1-expression signals were mainly detected in neurons. However, deficiency of aminopeptidase P1 resulted in fewer hippocampal astrocytes and increased density of microglia in the hippocampal CA3 area. In addition, Xpnpep1-/- CA3b pyramidal neurons were more excitable than wild-type neurons. These results indicate that insufficient astrocytic neuroprotection and enhanced neuronal excitability may underlie neurodegeneration and hippocampal dysfunction in aminopeptidase P1 deficiency.


Subject(s)
Aminopeptidases/deficiency , Aminopeptidases/metabolism , Neuroglia/metabolism , Animals , Astrocytes/metabolism , Female , Gene Expression/genetics , Gene Expression Regulation/genetics , Hippocampus/metabolism , Hippocampus/pathology , Learning/physiology , Male , Memory/physiology , Metabolism, Inborn Errors/genetics , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Microglia/metabolism , Nervous System Physiological Phenomena , Neuroglia/physiology , Neurons/metabolism , Pyramidal Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...