Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
J Anesth ; 38(3): 364-370, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38502324

ABSTRACT

PURPOSE: Though the finger is generally recommended for pulse oxygen saturation (SpO2) monitoring site, its reliability may be compromised in conditions of poor peripheral perfusion. Therefore, we compared the performance of nasal septum SpO2 monitoring with finger SpO2 monitoring relative to simultaneous arterial oxygen saturation (SaO2) monitoring in generally anesthetized patients. METHODS: In 23 adult patients, comparisons of SpO2 measured at the nasal septum and finger with simultaneous SaO2 were made at four time points during the 90 min study period. A pulse oximetry monitoring failure was defined as a > 10 s continuous failure of in an adequate SpO2 data acquisition. Core temperature as well as finger-tip and nasal septum temperatures were simultaneously measured at 10 min intervals. RESULTS: A total of 92 sets of SpO2 and SaO2 measurements were obtained in 23 patients. The bias and precision for SpO2 measured at the nasal septum were - 0.8 ± 1.3 (95% confidence interval: - 1.1 to - 0.6), which was similar to those for SpO2 measured at the finger (- 0.6 ± 1.4; 95% confidence interval: - 0.9 to - 0.4) (p = 0.154). Finger-tip temperatures were consistently lower than other two temperatures at all time points (p < 0.05), reaching 33.5 ± 2.3 °C at 90 min after induction of anesthesia. While pulse oximetry monitoring failure did not occur for nasal septum probe, two cases of failure occurred for finger probe. CONCLUSIONS: Considering the higher stability to hypothermia with a similar accuracy, nasal septum pulse oximetry may be an attractive alternative to finger pulse oximetry. Trail registration This study was registered with Clinical Research Information Service (CRIS: https://cris.nih.go.kr/cris/en/ ; ref: KCT0008352).


Subject(s)
Anesthesia, General , Fingers , Nasal Septum , Oximetry , Oxygen Saturation , Humans , Oximetry/methods , Oximetry/instrumentation , Fingers/blood supply , Male , Female , Anesthesia, General/methods , Middle Aged , Nasal Septum/surgery , Adult , Oxygen Saturation/physiology , Body Temperature/physiology , Monitoring, Intraoperative/methods , Monitoring, Intraoperative/instrumentation , Aged , Reproducibility of Results , Oxygen/blood
2.
Cell Death Dis ; 14(12): 812, 2023 12 09.
Article in English | MEDLINE | ID: mdl-38071243

ABSTRACT

Mesenchymal stem cells (MSCs) have great therapeutic advantages due to their immunosuppressive properties. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose signaling plays an important role in the immune system. AHR may be involved in the regulation of MSC-associated immunomodulatory functions. However, the mechanisms by which AHR controls the immunosuppressive functions of MSCs are not well understood. Here, we report that Ahr-deficient MSCs show decreased therapeutic efficacy against graft-versus-host disease (GVHD) compared to wild-type (WT)-MSCs. This was probably due to decreased iNOS protein expression, which is a key regulatory enzyme in MSC immunomodulation. The expression of eukaryotic elongation factor 2 kinase (eEF2K), which inhibits the elongation stage of protein synthesis, is significantly increased in the Ahr-deficient MSCs. Inhibition of eEF2K restored iNOS protein expression. AHR is known to act as an E3 ligase together with CUL4B. We observed constitutive binding of AHR to eEF2K. Consequently, ubiquitination and degradation of eEF2K were inhibited in Ahr-deficient MSCs and by the AHR antagonist CH223191 in WT-MSCs. In summary, AHR regulates the immunomodulatory functions of MSCs through ubiquitination of eEF2K, thereby controlling iNOS protein synthesis and its product, nitric oxide levels.


Subject(s)
Mesenchymal Stem Cells , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/genetics , Receptors, Aryl Hydrocarbon/metabolism , Elongation Factor 2 Kinase/genetics , Elongation Factor 2 Kinase/metabolism , Ubiquitination , Mesenchymal Stem Cells/metabolism , Immunomodulation
3.
Mol Metab ; 61: 101494, 2022 07.
Article in English | MEDLINE | ID: mdl-35421611

ABSTRACT

OBJECTIVE: Aberrant ketogenesis is correlated with the degree of steatosis in non-alcoholic fatty liver disease (NAFLD) patients, and an inborn error of ketogenesis (mitochondrial HMG-CoA synthase deficiency) is commonly associated with the development of the fatty liver. Here we aimed to determine the impact of Hmgcs2-mediated ketogenesis and its modulations on the development and treatment of fatty liver disease. METHODS: Loss- and gain-of-ketogenic function models, achieved by Hmgcs2 knockout and overexpression, respectively, were utilized to investigate the role of ketogenesis in the hepatic lipid accumulation during postnatal development and in a high-fat diet-induced NAFLD mouse model. RESULTS: Ketogenic function was decreased in NAFLD mice with a reduction in Hmgcs2 expression. Mice lacking Hmgcs2 developed spontaneous fatty liver phenotype during postnatal development, which was rescued by a shift to a low-fat dietary composition via early weaning. Hmgcs2 heterozygous adult mice, which exhibited lower ketogenic activity, were more susceptible to diet-induced NAFLD development, whereas HMGCS2 overexpression in NAFLD mice improved hepatosteatosis and glucose homeostasis. CONCLUSIONS: Our study adds new knowledge to the field of ketone body metabolism and shows that Hmgcs2-mediated ketogenesis modulates hepatic lipid regulation under a fat-enriched nutritional environment. The regulation of hepatic ketogenesis may be a viable therapeutic strategy in the prevention and treatment of hepatosteatosis.


Subject(s)
Diet, High-Fat , Hydroxymethylglutaryl-CoA Synthase , Ketosis , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat/adverse effects , Humans , Hydroxymethylglutaryl-CoA Synthase/genetics , Hydroxymethylglutaryl-CoA Synthase/metabolism , Ketone Bodies/genetics , Ketone Bodies/metabolism , Ketosis/genetics , Ketosis/metabolism , Lipids , Mice , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Non-alcoholic Fatty Liver Disease/metabolism
4.
Am J Physiol Heart Circ Physiol ; 322(5): H725-H741, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35245131

ABSTRACT

Previous studies have established that transmural gradients of the fast transient outward K+ current (Ito,f) correlate with regional differences in action potential (AP) profile and excitation-contraction coupling (ECC) with high Ito,f expression in the epimyocardium (EPI) being associated with short APs and low contractility and vice versa. Herein, we investigated the effects of altering the Ito,f gradients on transmural contractile properties using mice lacking Irx5 (Irx5-KO) or lacking Kcnd2 (KV4.2-KO) or both. Irx5-KO mice exhibited decreased global LV contractility in association with elevated Ito,f, as well as reduced cell shortening and Ca2+ transient amplitudes in cardiomyocytes isolated from the endomyocardium (ENDO) but not in cardiomyocytes from the EPI. Transcriptional profiling revealed that the primary effect of Irx5 ablation on ECC-related genes was to increase Ito,f gene expression (i.e., Kcnd2 and Kcnip2) in the ENDO, but not the EPI. By contrast, KV4.2-KO mice showed selective increases in cell shortening and Ca2+ transients in isolated EPI cardiomyocytes, leading to enhanced ventricular contractility and mice lacking both Irx5 and Kcnd2 displayed elevated ventricular contractility, comparable to KV4.2-KO mice, demonstrating a dominant role of Irx5-dependent modulation of Ito,f in the regulation of contractility. Our findings show that the transmural electromechanical heterogeneities in the healthy ventricles depend on the Irx5-dependent Ito,f gradients. These observations provide a useful framework for assessing the molecular mechanisms underlying the alterations in contractile heterogeneity seen in the diseased heart.NEW & NOTEWORTHY Irx5 is a vital transcription factor that establishes the transmural heterogeneity of ventricular myocyte contractility, thereby ensuring proper contractile function in the healthy heart. Regional differences in excitation-contraction coupling in the ventricular myocardium are primarily mediated through the inverse relationship between Irx5 and the fast transient outward K+ current (Ito,f) across the ventricular wall.


Subject(s)
Heart Ventricles , Myocardium , Action Potentials/physiology , Animals , Heart Ventricles/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Mice , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Anesth Pain Med (Seoul) ; 16(3): 279-283, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34233411

ABSTRACT

BACKGROUND: Patients with chronic liver disease (CLD) planned for liver transplantation (LT) often show severe thrombocytopenia, but there is a lack of evidence in deciding the threshold for prophylactic platelet transfusion. CASE: A 47-year-old female with acute liver failure was referred for LT. Despite daily transfusion of platelets, platelet counts remained under 10,000/µl. During LT, 2 units of single donor platelets (SDP) were transfused. Although platelet counts remained extremely low (3,000-4,000/µl) no diffuse oozing was observed and the blood loss was 860 ml. Postoperatively, there was no sign of active bleeding or oozing, and the patient received only 1 unit SDP transfusion. CONCLUSIONS: CLD patients may have severe thrombocytopenia. However, primary hemostasis may not be significantly hindered due to the existence of rebalanced hemostasis. Prophylactic platelet transfusion in these patients should not be decided based on platelet counts only, but also take other coagulation tests and clinical signs into consideration.

6.
Exp Neurobiol ; 30(2): 155-169, 2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33707347

ABSTRACT

Stroke causes systemic immunosuppression. T lymphocytes are involved in infarct size in the early stages of stroke. However, the phenotypes of T lymphocytes and their functions in peripheral immune organs and the brain have not been well analyzed in the acute and chronic phases of stroke. Here, we investigated pathological phenotypic alterations in the systemic immune response, especially changes in T lymphocytes, from one day to six months after ischemic stroke in mice. Impairment in thymocyte numbers, development, proliferation, and apoptosis were observed for up to two weeks. The number of mature T cells in the spleen and blood decreased and showed reduced interferon-γ production. Increased numbers of CD4-CD8-CD3+ double-negative T cells were observed in the mouse brain during the early stages of stroke, whereas interleukin (IL)-10+Foxp3+ regulatory T lymphocytes increased from two weeks during the chronic phase. These phenotypes correlated with body weight and neurological severity scores. The recovery of T lymphocyte numbers and increases in IL-10+Foxp3+ regulatory T lymphocytes may be important for long-term neurological outcomes. Dynamic changes in T lymphocytes between the acute and chronic phases may play different roles in pathogenesis and recovery. This study provides fundamental information regarding the T lymphocyte alterations from the brain to the peripheral immune organs following stroke.

7.
Circulation ; 142(23): 2240-2258, 2020 12 08.
Article in English | MEDLINE | ID: mdl-33070627

ABSTRACT

BACKGROUND: Cardiac hypertrophy is a key biological response to injurious stresses such as pressure overload and, when excessive, can lead to heart failure. Innate immune activation by danger signals, through intracellular pattern recognition receptors such as nucleotide-binding oligomerization domain 1 (Nod1) and its adaptor receptor-interacting protein 2 (RIP2), might play a major role in cardiac remodeling and progression to heart failure. We hypothesize that Nod1/RIP2 are major contributors to cardiac hypertrophy, but may not be sufficient to fully express the phenotype alone. METHODS: To elucidate the contribution of Nod1/RIP2 signaling to cardiac hypertrophy, we randomized Nod1-/-, RIP2-/-, or wild-type mice to transverse aortic constriction or sham operations. Cardiac hypertrophy, fibrosis, and cardiac function were examined in these mice. RESULTS: Nod1 and RIP2 proteins were upregulated in the heart after transverse aortic constriction, and this was paralleled by increased expression of mitochondrial proteins, including mitochondrial antiviral signaling protein (MAVS). Nod1-/- and RIP2-/- mice subjected to transverse aortic constriction exhibited better survival, improved cardiac function, and decreased cardiac hypertrophy. Downstream signal transduction pathways that regulate inflammation and fibrosis, including NF (nuclear factor) κB and MAPK (mitogen-activated protein kinase)-GATA4/p300, were reduced in both Nod1-/- and RIP2-/- mice after transverse aortic constriction compared with wild-type mice. Coimmunoprecipitation of extracted cardiac proteins and confocal immunofluorescence microscopy showed that Nod1/RIP2 interaction was robust and that this complex also included MAVS as an essential component. Suppression of MAVS expression attenuated the complex formation, NF κB signaling, and myocyte hypertrophy. Interrogation of mitochondrial function compared in the presence or ablation of MAVS revealed that MAVS serves to suppress mitochondrial energy output and mediate fission/fusion related dynamic changes. The latter is possibly linked to mitophagy during cardiomyocytes stress, which may provide an intriguing link between innate immune activation and mitochondrial energy balance under stress or injury conditions. CONCLUSIONS: We have identified that innate immune Nod1/RIP2 signaling is a major contributor to cardiac remodeling after stress. This process is critically joined by and regulated through the mitochondrial danger signal adapter MAVS. This novel complex coordinates remodeling, inflammatory response, and mitochondrial energy metabolism in stressed cardiomyocytes. Thus, Nod1/RIP2/MAVS signaling complex may represent an attractive new therapeutic approach toward heart failure.


Subject(s)
Adaptor Proteins, Signal Transducing/immunology , Cardiomegaly/immunology , Energy Metabolism/physiology , Immunity, Innate/physiology , Nod1 Signaling Adaptor Protein/immunology , Receptor-Interacting Protein Serine-Threonine Kinase 2/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Animals, Newborn , Cardiomegaly/metabolism , Cardiomegaly/pathology , Female , Humans , Induced Pluripotent Stem Cells/immunology , Induced Pluripotent Stem Cells/metabolism , Male , Mice , Mice, Knockout , Nod1 Signaling Adaptor Protein/metabolism , Receptor-Interacting Protein Serine-Threonine Kinase 2/metabolism , Signal Transduction/physiology
8.
Front Physiol ; 11: 605671, 2020.
Article in English | MEDLINE | ID: mdl-33424629

ABSTRACT

Atrial Fibrillation (AF) is the most common supraventricular tachyarrhythmia that is typically associated with cardiovascular disease (CVD) and poor cardiovascular health. Paradoxically, endurance athletes are also at risk for AF. While it is well-established that persistent AF is associated with atrial fibrosis, hypertrophy and inflammation, intensely exercised mice showed similar adverse atrial changes and increased AF vulnerability, which required tumor necrosis factor (TNF) signaling, even though ventricular structure and function improved. To identify some of the molecular factors underlying the chamber-specific and TNF-dependent atrial changes induced by exercise, we performed transcriptome analyses of hearts from wild-type and TNF-knockout mice following exercise for 2 days, 2 or 6 weeks of exercise. Consistent with the central role of atrial stretch arising from elevated venous pressure in AF promotion, all 3 time points were associated with differential regulation of genes in atria linked to mechanosensing (focal adhesion kinase, integrins and cell-cell communications), extracellular matrix (ECM) and TNF pathways, with TNF appearing to play a permissive, rather than causal, role in gene changes. Importantly, mechanosensing/ECM genes were only enriched, along with tubulin- and hypertrophy-related genes after 2 days of exercise while being downregulated at 2 and 6 weeks, suggesting that early reactive strain-dependent remodeling with exercise yields to compensatory adjustments. Moreover, at the later time points, there was also downregulation of both collagen genes and genes involved in collagen turnover, a pattern mirroring aging-related fibrosis. By comparison, twofold fewer genes were differentially regulated in ventricles vs. atria, independently of TNF. Our findings reveal that exercise promotes TNF-dependent atrial transcriptome remodeling of ECM/mechanosensing pathways, consistent with increased preload and atrial stretch seen with exercise. We propose that similar preload-dependent mechanisms are responsible for atrial changes and AF in both CVD patients and athletes.

9.
Ann Lab Med ; 40(1): 15-20, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31432634

ABSTRACT

BACKGROUND: Carbapenem-resistant K. pneumoniae 2297, isolated from a patient treated with tigecycline for pneumonia, developed tigecycline resistance, in contrast to carbapenem-resistant isolate 1215, which was collected four months prior to the 2297 isolate. Mechanisms underlying tigecycline resistance were elucidated for the clinical isolates. METHODS: The tigecycline minimum inhibitory concentration (MIC) was determined using the broth microdilution method, with or without phenylalanine-arginine ß-naphthylamide (PABN), and whole-genome sequencing was carried out by single-molecule real-time sequencing. The expression levels of the genes acrA, oqxA, ramA, rarA, and rpoB were determined by reverse-transcription quantitative PCR. RESULTS: Both isolates presented identical antibiograms, except for tigecycline, which showed an MIC of 0.5 mg/L in 1215 and 2 mg/L in 2297. The addition of PABN to tigecycline-resistant 2297 caused a four-fold decrease in the tigecycline MIC to 0.5 mg/L, although acrA expression (encoding the AcrAB efflux pump) was upregulated by 2.5 fold and ramA expression (encoding the pump activator RamA) was upregulated by 1.4 fold. We identified a 6,096-bp fragment insertion flanking direct TATAT repeats that disrupted the romA gene located upstream of ramA in the chromosome of K. pneumoniae 2297; the insertion led the ramA gene promoter replacement resulting in stronger activation of the gene. CONCLUSIONS: The K. pneumoniae isolate developed tigecycline resistance during tigecycline treatment. It was related to the overexpression of the AcrAB resistance-nodulation-cell division efflux system due to promoter replacement.


Subject(s)
Bacterial Proteins/metabolism , Drug Resistance, Bacterial/genetics , Klebsiella pneumoniae/genetics , Membrane Transport Proteins/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacterial Proteins/genetics , Genome, Bacterial , Humans , Klebsiella Infections/diagnosis , Klebsiella Infections/drug therapy , Klebsiella Infections/microbiology , Klebsiella pneumoniae/drug effects , Klebsiella pneumoniae/isolation & purification , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Promoter Regions, Genetic , Tigecycline/pharmacology , Tigecycline/therapeutic use , Whole Genome Sequencing , beta-Lactamases/genetics , beta-Lactamases/metabolism
10.
J Vis Exp ; (153)2019 11 27.
Article in English | MEDLINE | ID: mdl-31840661

ABSTRACT

Intermittent fasting (IF), a dietary intervention involving periodic energy restriction, has been considered to provide numerous benefits and counteract metabolic abnormalities. So far, different types of IF models with varying durations of fasting and feeding periods have been documented. However, interpreting the outcomes is challenging, as many of these models involve multifactorial contributions from both time- and calorie-restriction strategies. For example, the alternate day fasting model, often used as a rodent IF regimen, can result in underfeeding, suggesting that health benefits from this intervention are likely mediated via both caloric restriction and fasting-refeeding cycles. Recently, it has been successfully demonstrated that 2:1 IF, comprising 1 day of fasting followed by 2 days of feeding, can provide protection against diet-induced obesity and metabolic improvements without a reduction in overall caloric intake. Presented here is a protocol of this isocaloric 2:1 IF intervention in mice. Also described is a pair-feeding (PF) protocol required to examine a mouse model with altered eating behaviors, such as hyperphagia. Using the 2:1 IF regimen, it is demonstrated that isocaloric IF leads to reduced body weight gain, improved glucose homeostasis, and elevated energy expenditure. Thus, this regimen may be useful to investigate the health impacts of IF on various disease conditions.


Subject(s)
Caloric Restriction/methods , Energy Intake/physiology , Fasting/metabolism , Obesity/diet therapy , Obesity/metabolism , Animals , Diet, High-Fat/adverse effects , Energy Metabolism/physiology , Feeding Behavior/physiology , Male , Mice , Mice, Inbred C57BL , Obesity/etiology
11.
J Biol Chem ; 291(8): 4156-65, 2016 Feb 19.
Article in English | MEDLINE | ID: mdl-26742842

ABSTRACT

The fast transient outward potassium current (Ito,f) plays a critical role in the electrical and contractile properties of the myocardium. Ito,f channels are formed by the co-assembly of the pore-forming α-subunits, Kv4.2 and Kv4.3, together with the accessory ß-subunit KChIP2. Reductions of Ito,f are common in the diseased heart, which is also associated with enhanced stimulation of ß-adrenergic receptors (ß-ARs). We used cultured neonatal rat ventricular myocytes to examine how chronic ß-AR stimulation decreases Ito,f. To determine which downstream pathways mediate these Ito,f changes, adenoviral infections were used to inhibit CaMKIIδc, CaMKIIδb, calcineurin, or nuclear factor κB (NF-κB). We observed that chronic ß-AR stimulation with isoproterenol (ISO) for 48 h reduced Ito,f along with mRNA expression of all three of its subunits (Kv4.2, Kv4.3, and KChIP2). Inhibiting either CaMKIIδc nor CaMKIIδb did not prevent the ISO-mediated Ito,f reductions, even though CaMKIIδc and CaMKIIδb clearly regulated Ito,f and the mRNA expression of its subunits. Likewise, calcineurin inhibition did not prevent the Ito,f reductions induced by ß-AR stimulation despite strongly modulating Ito,f and subunit mRNA expression. In contrast, NF-κB inhibition partly rescued the ISO-mediated Ito,f reductions in association with restoration of KChIP2 mRNA expression. Consistent with these observations, KChIP2 promoter activity was reduced by p65 as well as ß-AR stimulation. In conclusion, NF-κB, and not CaMKIIδ or calcineurin, partly mediates the Ito,f reductions induced by chronic ß-AR stimulation. Both mRNA and KChIP2 promoter data suggest that the ISO-induced Ito,f reductions are, in part, mediated through reduced KChIP2 transcription caused by NF-κB activation.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Isoproterenol/pharmacology , Kv Channel-Interacting Proteins/metabolism , Myocytes, Cardiac/metabolism , NF-kappa B/metabolism , Transcription, Genetic/drug effects , Animals , Calcineurin/genetics , Calcineurin/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/genetics , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Gene Expression Regulation/drug effects , Kv Channel-Interacting Proteins/genetics , NF-kappa B/genetics , Rats , Rats, Sprague-Dawley , Receptors, Adrenergic/genetics , Receptors, Adrenergic/metabolism , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...