Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38475225

ABSTRACT

In this study, we explore how the strategic positioning of conductive yarns influences the performance of plated knit strain sensors fabricated using commercial knitting machines with both conductive and non-conductive yarns. Our study reveals that sensors with conductive yarns located at the rear, referred to as 'purl plated sensors', exhibit superior performance in comparison to those with conductive yarns at the front, or 'knit plated sensors'. Specifically, purl plated sensors demonstrate a higher sensitivity, evidenced by a gauge factor ranging from 3 to 18, and a minimized strain delay, indicated by a 1% strain in their electromechanical response. To elucidate the mechanisms behind these observations, we developed an equivalent circuit model. This model examines the role of contact resistance within varying yarn configurations on the sensors' sensitivity, highlighting the critical influence of contact resistance in conductive yarns subjected to wale-wise stretching on sensor responsiveness. Furthermore, our findings illustrate that the purl plated sensors benefit from the vertical movement of non-conductive yarns, which promotes enhanced contact between adjacent conductive yarns, thereby improving both the stability and sensitivity of the sensors. The practicality of these sensors is confirmed through bending cycle tests with an in situ monitoring system, showcasing the purl plated sensors' exceptional reproducibility, with a standard deviation of 0.015 across 1000 cycles, and their superior sensitivity, making them ideal for wearable devices designed for real-time joint movement monitoring. This research highlights the critical importance of conductive yarn placement in sensor efficacy, providing valuable guidance for crafting advanced textile-based strain sensors.

2.
Toxicol Res ; 33(2): 107-118, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28443181

ABSTRACT

Although alternative test methods based on the 3Rs (Replacement, Reduction, Refinement) are being developed to replace animal testing in reproductive and developmental toxicology, they are still in an early stage. Consequently, we aimed to develop alternative test methods in male animals using mouse spermatogonial stem cells (mSSCs). Here, we modified the OECD TG 489 and optimized the in vitro comet assay in our previous study. This study aimed to verify the validity of in vitro tests involving mSSCs by comparing their results with those of in vivo tests using C57BL/6 mice by gavage. We selected hydroxyurea (HU), which is known to chemically induce male reproductive toxicity. The 50% inhibitory concentration (IC50) value of HU was 0.9 mM, as determined by the MTT assay. In the in vitro comet assay, % tail DNA and Olive tail moment (OTM) after HU administration increased significantly, compared to the control. Annexin V, PI staining and TUNEL assays showed that HU caused apoptosis in mSSCs. In order to compare in vitro tests with in vivo tests, the same substances were administered to male C57BL/6 mice. Reproductive toxicity was observed at 25, 50, 100, and 200 mg/kg/day as measured by clinical measures of reduction in sperm motility and testicular weight. The comet assay, DCFH-DA assay, H&E staining, and TUNEL assay were also performed. The results of the test with C57BL/6 mice were similar to those with mSSCs for HU treatment. Finally, linear regression analysis showed a strong positive correlation between results of in vitro tests and those of in vivo. In conclusion, the present study is the first to demonstrate the effect of HU-induced DNA damage, ROS formation, and apoptosis in mSSCs. Further, the results of the current study suggest that mSSCs could be a useful model to predict male reproductive toxicity.

3.
Food Sci Biotechnol ; 26(6): 1659-1666, 2017.
Article in English | MEDLINE | ID: mdl-30263703

ABSTRACT

A 4-α-glucanotransferases from Thermus thermophilus (TTαGT) possesses an extra substrate binding site, leading to facile purification of the intact enzyme using amylose as an insoluble binding matrix. Due to the cost of amylose and low recovery yield, starch was replaced for amylose as an alternative capturer in this study. Using gelatinized corn starch at pH 9 with 36-h incubation in the presence of 1 M ammonium sulfate increased the TTαGT-starch complex formation yield from 2 to 56%. In preparative-scale production, TTαGT produced in Bacillus subtilis was recovered by 42.1% with the same specific activity as that of purified TTαGT. Structural and rheological analyses of the enzymatically modified starches revealed that the starch complex exhibited catalytic performance comparable to soluble TTαGT, suggesting that the starch complex can be used as a biocatalyst for modified starch production without elution of the enzyme from the complex.

SELECTION OF CITATIONS
SEARCH DETAIL
...