Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(3): 731-743, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38198639

ABSTRACT

The exciton states on the smallest type-I photosynthetic reaction center complex of a green sulfur bacterium Chlorobaculum tepidum (GsbRC) consisting of 26 bacteriochlorophylls a (BChl a) and four chlorophylls a (Chl a) located on the homodimer of two PscA reaction center polypeptides were investigated. This analysis involved the study of exciton states through a combination of theoretical modeling and the genetic removal of BChl a pigments at eight sites. (1) A theoretical model of the pigment assembly exciton state on GsbRC was constructed using Poisson TrESP (P-TrESP) and charge density coupling (CDC) methods based on structural information. The model reproduced the experimentally obtained absorption spectrum, circular dichroism spectrum, and excitation transfer dynamics, as well as explained the effects of mutation. (2) Eight BChl a molecules at different locations on the GsbRC were selectively removed by genetic exchange of the His residue, which ligates the central Mg atom of BChl a, with the Leu residue on either one or two PscAs in the RC. His locations are conserved among all type-I RC plant polypeptide, cyanobacteria, and bacteria amino acid sequences. (3) Purified mutant-GsbRCs demonstrated distinct absorption and fluorescence spectra at 77 K, which were different from each other, suggesting successful pigment removal. (4) The same mutations were applied to the constructed theoretical model to analyze the outcomes of these mutations. (5) The combination of theoretical predictions and experimental mutations based on structural information is a new tool for studying the function and evolution of photosynthetic reaction centers.


Subject(s)
Chlorobi , Cyanobacteria , Photosynthetic Reaction Center Complex Proteins , Photosynthetic Reaction Center Complex Proteins/chemistry , Chlorobi/chemistry , Mutation , Cyanobacteria/metabolism , Sulfur/metabolism , Bacteriochlorophylls/chemistry , Bacterial Proteins/chemistry
2.
Curr Res Struct Biol ; 5: 100101, 2023.
Article in English | MEDLINE | ID: mdl-37180033

ABSTRACT

In photosynthetic green sulfur bacteria, the electron transfer reaction from menaquinol:cytochrome c oxidoreductase to the P840 reaction center (RC) complex occurs directly without any involvement of soluble electron carrier protein(s). X-ray crystallography has determined the three-dimensional structures of the soluble domains of the CT0073 gene product and Rieske iron-sulfur protein (ISP). The former is a mono-heme cytochrome c with an α-absorption peak at 556 nm. The overall fold of the soluble domain of cytochrome c-556 (designated as cyt c-556sol) consists of four α-helices and is very similar to that of water-soluble cyt c-554 that independently functions as an electron donor to the P840 RC complex. However, the latter's remarkably long and flexible loop between the α3 and α4 helices seems to make it impossible to be a substitute for the former. The structure of the soluble domain of the Rieske ISP (Rieskesol protein) shows a typical ß-sheets-dominated fold with a small cluster-binding and a large subdomain. The architecture of the Rieskesol protein is bilobal and belongs to those of b6f-type Rieske ISPs. Nuclear magnetic resonance (NMR) measurements revealed weak non-polar but specific interaction sites on Rieskesol protein when mixed with cyt c-556sol. Therefore, menaquinol:cytochrome c oxidoreductase in green sulfur bacteria features a Rieske/cytb complex tightly associated with membrane-anchored cyt c-556.

3.
Biol Pharm Bull ; 45(8): 1022-1026, 2022.
Article in English | MEDLINE | ID: mdl-35908885

ABSTRACT

The emu is the second largest ratite; thus, their sera and egg yolks, obtained after immunization, could provide therapeutic and diagnostically important immunoglobulins with improved production efficiency. Reliable purification tools are required to establish a pipeline for supplying practical emu-derived antibodies, the majority of which belongs to the immunoglobulin Y (IgY) class. Therefore, we generated a monoclonal secondary antibody specific to emu IgY. Initially, we immunized an emu with bovine serum albumin multiply haptenized with 2,4-dinitrophenyl (DNP) groups. Polyclonal emu anti-DNP antibodies were partially purified using conventional precipitation method and used as antigen for immunizing a BALB/c mouse. Splenocytes were fused with myeloma cells and a hybridoma clone secreting a desirable secondary antibody (mAb#2-16) was established. The secondary antibody bound specifically to emu-derived IgY, distinguishing IgYs from chicken, duck, ostrich, quail, and turkey, as well as human IgGs. Affinity columns immobilizing the mAb#2-16 antibodies enabled purification of emu IgY fractions from sera and egg yolks via simple protocols, with which we succeeded in producing IgYs specific to the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) spike protein with a practical binding ability. We expect that the presented purification method, and the secondary antibody produced in this study, will facilitate the utilization of emus as a novel source of therapeutic and diagnostic antibodies.


Subject(s)
COVID-19 , Dromaiidae , Animals , Antibodies, Monoclonal , COVID-19 Testing , Chickens/metabolism , Dromaiidae/metabolism , Humans , Immunoglobulins , Mice , SARS-CoV-2
4.
J Chem Phys ; 156(10): 105102, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35291800

ABSTRACT

The photosynthetic reaction center of heliobacteria (hRC) is a homodimeric chromoprotein responsible for light harvesting and photoelectric conversion. The fluorescence of the hRC is radiated from a bacteriochlorophyll (Bchl) g having the lowest energy level, called red-Bchl g. The homodimeric architecture of the hRC indicates that it includes two red-Bchls g arranged symmetrically in pairs. Red-Bchl g is a fluorescent probe useful for monitoring the energy transfer network in the RC. Here, we show the fluorescence polarization dependences of two red-Bchls g, individually measured with selective excitation of chlorophyll a serving as the primary electron acceptor. The two red-Bchls g exhibit almost the same polarization dependences. Based on the polarization dependence and structural data of the hRC, we propose a candidate molecule for red-Bchl g. The fluorescence spectra of single hRCs represent the spectral heterogeneity reflecting the local conformational inhomogeneity. A time series of the fluorescence spectra indicates occasional peak shifts between blue- and red-shifted states without significant changes in the fluorescence intensity. The spectral fluctuation is interpreted to be due to the local conformational dynamics around a Bchl g mediating the energy transfer, switching the terminal energy acceptor between two red-Bchls g. In conclusion, while the energy transfer network in the RC can be perturbed by microscopic dynamics, the total energy transfer efficiency, i.e., the light-harvesting function, is rather robust. The functional robustness may be due to multiple energy transfer pathways composed of many antenna pigments in the RC.


Subject(s)
Bacteriochlorophylls , Photosynthetic Reaction Center Complex Proteins , Bacteriochlorophylls/chemistry , Chlorophyll A , Energy Transfer , Light-Harvesting Protein Complexes/metabolism , Photosynthetic Reaction Center Complex Proteins/chemistry , Single Molecule Imaging
5.
J Phys Chem Lett ; 11(10): 3980-3986, 2020 May 21.
Article in English | MEDLINE | ID: mdl-32352789

ABSTRACT

The photosynthetic reaction center (RC) converts light energy into electrochemical energy. The RC of heliobacteria (hRC) is a primitive homodimeric RC containing 58 bacteriochlorophylls and 2 chlorophyll as. The chlorophyll serves as the primary electron acceptor (Chl a-A0) responsible for light harvesting and charge separation. The single-molecule spectroscopy of Chl a-A0 can be used to investigate heterogeneities of the RC photochemical function, though the low fluorescence quantum yield (0.1%) makes it difficult. Here, we show the fluorescence excitation spectroscopy of individual Chl a-A0s in single hRCs at 6 K. The fluorescence quantum yield and absorption cross section of Chl a-A0 increase 2- and 4-fold, respectively, compared to those at room temperature. The two Chl a-A0s in single hRCs are identified as two distinct peaks in the fluorescence excitation spectrum, exhibiting different excitation polarization dependences. The spectral changes caused by photobleaching indicate the energy transfer across subunits in the hRC.

6.
J Phys Chem B ; 122(9): 2536-2543, 2018 03 08.
Article in English | MEDLINE | ID: mdl-29420036

ABSTRACT

Function/location of menaquinone (MQ) was studied in the photosynthetic reaction center of Heliobacterium (Hbt.) modesticaldum (hRC), which is one of the most primitive homodimeric type I RCs. The spin-polarized electron paramagnetic resonance signals of light-induced radical pair species, which are made of oxidized electron donor bacteriochlorophyll g (P800+) and reduced menaquinone (MQ-) or iron-sulfur cluster (FX-), were measured in the oriented membranes of Hbt. modesticaldum at cryogenic temperature. The spectral shape of transient electron spin-polarized signal of P800+FX- radical pair state varied little with respect to the direction of the external magnetic field. It suggested a dominant contribution of the spin evolution on the precursor primary radical pair P800+A0- state with the larger isotropic magnetic exchange interaction J than the anisotropic dipole interaction D. The pure P800+MQ- signal was simulated by subtracting the effects of spin evolution during the electron-transfer process. It was concluded that the J value of the P800+MQ- radical pair is negative with an amplitude almost comparable to | D|. It is in contrast to a positive and small J value of the P700+PhyQ- state in photosystem I (PS I). The results indicate similar but somewhat different locations/binding sites of quinones between hRC and PS I.


Subject(s)
Bacteriochlorophylls/chemistry , Clostridiales/chemistry , Light , Photosystem I Protein Complex/chemistry , Vitamin K 2/chemistry , Bacteriochlorophylls/metabolism , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Free Radicals/metabolism , Photosystem I Protein Complex/metabolism , Vitamin K 2/metabolism
7.
J Phys Chem B ; 121(12): 2543-2553, 2017 03 30.
Article in English | MEDLINE | ID: mdl-28252967

ABSTRACT

The magnetic properties of the Rieske protein purified from Chlorobaculum tepidum were investigated using electron paramagnetic resonance and hyperfine sublevel correlation spectroscopy (HYSCORE). The g-values of the Fe2S2 center were gx = 1.81, gy = 1.90, and gz = 2.03. Four classes of nitrogen signals were obtained by HYSCORE. Nitrogens 1 and 2 had relatively strong magnetic hyperfine couplings and were assigned as the nitrogen directly ligated to Fe. Nitrogens 3 and 4 had relatively weak magnetic hyperfine couplings and were assigned as the other nitrogen of the His ligands and peptide nitrogen connected to the sulfur atom via hydrogen bonding, respectively. The anisotropy of nitrogen 3 reflects the different spin density distributions on the His ligands, which influences the electron transfer to quinone.


Subject(s)
Bacterial Proteins/chemistry , Chlorobi/chemistry , Electron Transport Complex III/chemistry , Benzoquinones/chemistry , Electron Spin Resonance Spectroscopy , Electrons , Hydrogen Bonding , Iron/chemistry , Ligands , Models, Molecular , Nitrogen/chemistry , Sulfur/chemistry
8.
J Phys Chem B ; 120(18): 4204-12, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27101081

ABSTRACT

Orientations of the FA and FB iron-sulfur (FeS) clusters in a structure-unknown type-I homodimeric heriobacterial reaction center (hRC) were studied in oriented membranes of the thermophilic anaerobic photosynthetic bacterium Heliobacterium modesticaldum by electron paramagnetic resonance (EPR), and compared with those in heterodimeric photosystem I (PS I). The Rieske-type FeS center in the cytochrome b/c complex showed a well-oriented EPR signal. Illumination at 14 K induced an FB(-) signal with g-axes of gz = 2.066, gy = 1.937, and gx = 1.890, tilted at angles of 60°, 60°, and 45°, respectively, with respect to the membrane normal. Chemical reduction with dithionite produced an additional signal of FA(-), which magnetically interacted with FB(-), with gz = 2.046, gy = 1.942, and gx = 1.911 at 30°, 60°, and 90°, respectively. The angles and redox properties of FA(-) and FB(-) in hRC resemble those of FB(-) and FA(-), respectively, in PS I. Therefore, FA and FB in hRC, named after their g-value similarities, seem to be located like FB and FA, not like FA and FB, respectively, in PS I. The reducing side of hRC could resemble those in PS I, if the names of FA and FB are interchanged with each other.


Subject(s)
Bacterial Proteins/chemistry , Clostridiales/metabolism , Iron-Sulfur Proteins/chemistry , Photosystem I Protein Complex/chemistry , Bacterial Proteins/metabolism , Dimerization , Electron Spin Resonance Spectroscopy , Iron-Sulfur Proteins/metabolism , Oxidation-Reduction , Photosystem I Protein Complex/metabolism
9.
Sci Rep ; 6: 19878, 2016 Jan 25.
Article in English | MEDLINE | ID: mdl-26804137

ABSTRACT

Homodimeric photosynthetic reaction centers (RCs) in green sulfur bacteria and heliobacteria are functional homologs of Photosystem (PS) I in oxygenic phototrophs. They show unique features in their electron transfer reactions; however, detailed structural information has not been available so far. We mutated PscA-Leu688 and PscA-Val689 to cysteine residues in the green sulfur bacterium Chlorobaculum tepidum; these residues were predicted to interact with the special pair P840, based on sequence comparison with PS I. Spectroelectrochemical measurements showed that the L688C and V689C mutations altered a near-infrared difference spectrum upon P840 oxidation, as well as the redox potential of P840. Light-induced Fourier transform infrared difference measurements showed that the L688C mutation induced a differential signal of the S-H stretching vibration in the P840(+)/P840 spectrum, as reported in P800(+)/P800 difference spectrum in a heliobacterial RC. Spectral changes in the 13(1)-keto C=O region, caused by both mutations, revealed corresponding changes in the electronic structure of P840 and in the hydrogen-bonding interaction at the 13(1)-keto C=O group. These results suggest that there is a common spatial configuration around the special pair sites among type 1 RCs. The data also provided evidence that P840 has a symmetric electronic structure, as expected from a homodimeric RC.


Subject(s)
Bacterial Proteins/chemistry , Chlorobi/genetics , Photosystem I Protein Complex/genetics , Protein Conformation/drug effects , Bacterial Proteins/genetics , Chlorobi/chemistry , Hydrogen Bonding/drug effects , Mutation , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology , Oxidation-Reduction , Photosystem I Protein Complex/chemistry
10.
J Phys Chem B ; 119(27): 8480-9, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26075484

ABSTRACT

The type I photosynthetic reaction center (RC) of heliobacteria (hRC) is a homodimer containing cofactors almost analogous to those in the plant photosystem I (PS I). However, its three-dimensional structure is not yet clear. PS I uses phylloquinone (PhyQ) as a secondary electron acceptor (A1), while the available evidence has suggested that menaquinone (MQ) in hRC has no function as A1. The present study identified a new transient electron spin-polarized electron paramagnetic resonance (ESP-EPR) signal, arising from the radical pair of the oxidized electron donor and the reduced electron acceptor (P800(+)MQ(-)), in the hRC core complex and membranes from Heliobacterium modesticaldum. The ESP signal could be detected at 5-20 K upon flash excitation only after prereduction of the iron-sulfur center, F(X), and was selectively lost by extraction of MQ with diethyl ether. MQ was suggested to be located closer to F(X) than PhyQ in PS I based on the simulation of the unique A/E (A, absorption; E, emission) ESP pattern, the reduction/oxidation rates of MQ, and the power saturation property of the static MQ(-) signal. The result revealed the quinone usage as the secondary electron acceptor in hRC, as in the case of PS I.


Subject(s)
Bacterial Proteins/chemistry , Electrons , Photosystem I Protein Complex/chemistry , Vitamin K 2/chemistry , Cell Membrane/chemistry , Clostridiales , Dimerization , Electron Spin Resonance Spectroscopy , Ether/chemistry , Oxidation-Reduction , Temperature
11.
Photosynth Res ; 118(3): 249-58, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24052268

ABSTRACT

The cytochrome (Cyt) c-554 in thermophilic green photosynthetic bacterium Chlorobaculum tepidum serves as an intermediate electron carrier, transferring electrons to the membrane-bound Cyt c z from various enzymes involved in the oxidations of sulfide, thiosulfate, and sulfite compounds. Spectroscopically, this protein exhibits an asymmetric α-absorption band for the reduced form and particularly large paramagnetic (1)H NMR shifts for the heme methyl groups with an unusual shift pattern in the oxidized form. The crystal structure of the Cyt c-554 has been determined at high resolution. The overall fold consists of four α-helices and is characterized by a remarkably long and flexible loop between the α3 and α4 helices. The axial ligand methionine has S-chirality at the sulfur atom with its C(ε)H3 group pointing toward the heme pyrrole ring I. This configuration corresponds to an orientation of the lone-pair orbital of the sulfur atom directed at the pyrrole ring II and explains the lowest-field (1)H NMR shift arising from the 18(1) heme methyl protons. Differing from most other class I Cyts c, no hydrogen bond was formed between the methionine sulfur atom and polypeptide chain. Lack of this hydrogen bond may account for the observed large paramagnetic (1)H NMR shifts of the heme methyl protons. The surface-exposed heme pyrrole ring II edge is in a relatively hydrophobic environment surrounded by several electronically neutral residues. This portion is considered as an electron transfer gateway. The structure of the Cyt c-554 is compared with those of other Cyts c, and possible interactions of this protein with its electron transport partners are discussed.


Subject(s)
Chlorobium/chemistry , Cytochrome c Group/chemistry , Models, Structural , Chlorobium/genetics , Chlorobium/metabolism , Crystallization , Cytochrome c Group/genetics , Cytochrome c Group/isolation & purification , Cytochrome c Group/metabolism , Electron Transport , Gene Expression , Models, Molecular
12.
Plant Cell ; 23(7): 2644-58, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21764989

ABSTRACT

Monogalactosyldiacylglycerol (MGDG), which is conserved in almost all photosynthetic organisms, is the most abundant natural polar lipid on Earth. In plants, MGDG is highly accumulated in the chloroplast membranes and is an important bulk constituent of thylakoid membranes. However, precise functions of MGDG in photosynthesis have not been well understood. Here, we report a novel MGDG synthase from the green sulfur bacterium Chlorobaculum tepidum. This enzyme, MgdA, catalyzes MGDG synthesis using UDP-Gal as a substrate. The gene encoding MgdA was essential for this bacterium; only heterozygous mgdA mutants could be isolated. An mgdA knockdown mutation affected in vivo assembly of bacteriochlorophyll c aggregates, suggesting the involvement of MGDG in the construction of the light-harvesting complex called chlorosome. These results indicate that MGDG biosynthesis has been independently established in each photosynthetic organism to perform photosynthesis under different environmental conditions. We complemented an Arabidopsis thaliana MGDG synthase mutant by heterologous expression of MgdA. The complemented plants showed almost normal levels of MGDG, although they also had abnormal morphological phenotypes, including reduced chlorophyll content, no apical dominance in shoot growth, atypical flower development, and infertility. These observations provide new insights regarding the importance of regulated MGDG synthesis in the physiology of higher plants.


Subject(s)
Bacterial Proteins/metabolism , Chlorobi/enzymology , Chlorobi/physiology , Galactolipids/biosynthesis , Galactosyltransferases/metabolism , Photosynthesis/physiology , Amino Acid Sequence , Arabidopsis/anatomy & histology , Arabidopsis/enzymology , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Bacterial Proteins/classification , Bacterial Proteins/genetics , Chlorobi/chemistry , Chlorobi/genetics , Chloroplasts/metabolism , Chloroplasts/ultrastructure , Galactosyltransferases/classification , Galactosyltransferases/genetics , Gene Knockdown Techniques , Genetic Complementation Test , Molecular Sequence Data , Phenotype , Phylogeny , Plants, Genetically Modified , Sequence Alignment
13.
Biochim Biophys Acta ; 1807(7): 803-12, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21420930

ABSTRACT

The 6xHis-tag-pscA gene, which was genetically engineered to express N-terminally histidine (His)-tagged PscA, was inserted into a coding region of the recA gene in the green sulfur bacterium Chlorobaculum tepidum (C. tepidum). Although the inactivation of the recA gene strongly suppressed a homologous recombination in C. tepidum genomic DNA, the mutant grew well under normal photosynthetic conditions. The His-tagged reaction center (RC) complex could be obtained simply by Ni(2+)-affinity chromatography after detergent solubilization of chlorosome-containing membranes. The complex consisted of three subunits, PscA, PscB, and PscC, in addition to the Fenna-Matthews-Olson protein, but there was no PscD. Low-temperature EPR spectroscopic studies in combination with transient absorption measurements indicated that the complex contained all intrinsic electron transfer cofactors as detected in the wild-type strain. Furthermore, the LC/MS/MS analysis revealed that the core protein consisted of a mixture of a His-/His-tagged PscA homodimer and a non-/His-tagged PscA heterodimer. The development of the pscA gene duplication method presented here, thus, enables not only a quick and large-scale preparation of the RC complex from C. tepidum but also site-directed mutagenesis experiments on the artificially incorporated 6xHis-tag-pscA gene itself, since the expression of the authentic PscA/PscA homodimeric RC complex could complement any defect in mutated His-tagged PscA. This method would provide an invaluable tool for structural and functional analyses of the homodimeric type 1 RC complex.


Subject(s)
Bacterial Proteins/chemistry , Chlorobi/chemistry , Chlorobi/metabolism , Photosynthetic Reaction Center Complex Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Chlorobi/genetics , Electron Spin Resonance Spectroscopy , Genetic Engineering , Mass Spectrometry , Mutagenesis, Site-Directed/methods , Phenotype , Photosynthetic Reaction Center Complex Proteins/genetics , Photosynthetic Reaction Center Complex Proteins/metabolism , Photosystem I Protein Complex/chemistry , Photosystem I Protein Complex/genetics , Photosystem I Protein Complex/metabolism , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Protein Multimerization , Protein Subunits/chemistry , Protein Subunits/genetics , Protein Subunits/metabolism , Rec A Recombinases/genetics , Rec A Recombinases/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
14.
Biochemistry ; 49(26): 5455-63, 2010 Jul 06.
Article in English | MEDLINE | ID: mdl-20521767

ABSTRACT

The Fenna-Matthews-Olson light-harvesting antenna (FMO) protein has been a model system for understanding pigment-protein interactions in the energy transfer process in photosynthesis. All previous studies have utilized wild-type FMO proteins from several species. Here we report the purification and characterization of the first FMO protein variant generated via replacement of the esterifying alcohol at the C-17 propionate residue of bacteriochlorophyll (BChl) a, phytol, with geranylgeraniol, which possesses three more double bonds. The FMO protein still assembles with the modified pigment, but both the whole cell absorption and the biochemical purification indicate that the mutant cells contain a much less mature FMO protein. The gene expression was checked using qRT-PCR, and none of the genes encoding BChl a-binding proteins are strongly regulated at the transcriptional level. The smaller amount of the FMO protein in the mutant cell is probably due to the degradation of the apo-FMO protein at different stages after it does not bind the normal pigment. The absorption, fluorescence, and CD spectra of the purified FMO variant protein are similar to those of the wild-type FMO protein except the conformations of most pigments are more heterogeneous, which broadens the spectral bands. Interestingly, the lowest-energy pigment binding site seems to be unchanged and is the only peak that can be well resolved in 77 K absorption spectra. The excited-state lifetime of the variant FMO protein is unchanged from that of the wild type and shows a temperature-dependent modulation similar to that of the wild type. The variant FMO protein is less thermally stable than the wild type. The assembly of the FMO protein and also the implications of the decreased FMO/chlorosome stoichiometry are discussed in terms of the topology of these two antennas on the cytoplasmic membrane.


Subject(s)
Bacterial Proteins/genetics , Bacteriochlorophyll A/metabolism , Diterpenes/metabolism , Light-Harvesting Protein Complexes/genetics , Chlorobi , Energy Transfer , Esterification , Gene Expression Profiling , Gene Expression Regulation, Bacterial , Genetic Variation , Photosynthesis , Phytol , Protein Stability
15.
Photosynth Res ; 104(2-3): 305-19, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20165917

ABSTRACT

Minor but key chlorophylls (Chls) and quinones in photosystem (PS) I-type reaction centers (RCs) are overviewed in regard to their molecular structures. In the PS I-type RCs, the prime-type chlorophylls, namely, bacteriochlorophyll (BChl) a' in green sulfur bacteria, BChl g' in heliobacteria, Chl a' in Chl a-type PS I, and Chl d' in Chl d-type PS I, function as the special pairs, either as homodimers, (BChl a')(2) and (BChl g')(2) in anoxygenic organisms, or heterodimers, Chl a/a' and Chl d/d' in oxygenic photosynthesis. Conversions of BChl g to Chl a and Chl a to Chl d take place spontaneously under mild condition in vitro. The primary electron acceptors, A (0), are Chl a-derivatives even in anoxygenic PS I-type RCs. The secondary electron acceptors are naphthoquinones, whereas the side chains may have been modified after the birth of cyanobacteria, leading to succession from menaquinone to phylloquinone in oxygenic PS I.


Subject(s)
Bacteria/metabolism , Chlorophyll/chemistry , Photosystem I Protein Complex/chemistry , Quinones/chemistry , Dimerization
16.
J Mol Biol ; 397(5): 1175-87, 2010 Apr 16.
Article in English | MEDLINE | ID: mdl-20156447

ABSTRACT

In green sulfur photosynthetic bacteria, the cytochrome c(z) (cyt c(z)) subunit in the reaction center complex mediates electron transfer mainly from menaquinol/cytochrome c oxidoreductase to the special pair (P840) of the reaction center. The cyt c(z) subunit consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. The periplasmic soluble domain has been proposed to be highly mobile and to fluctuate between oxidoreductase and P840 during photosynthetic electron transfer. We have determined the crystal structure of the oxidized form of the C-terminal functional domain of the cyt c(z) subunit (C-cyt c(z)) from thermophilic green sulfur bacterium Chlorobium tepidum at 1.3-A resolution. The overall fold of C-cyt c(z) consists of four alpha-helices and is similar to that of class I cytochrome c proteins despite the low similarity in their amino acid sequences. The N-terminal structure of C-cyt c(z) supports the swinging mechanism previously proposed in relation with electron transfer, and the surface properties provide useful information on possible interaction sites with its electron transfer partners. Several characteristic features are observed for the heme environment: These include orientation of the axial ligands with respect to the heme plane, surface-exposed area of the heme, positions of water molecules, and hydrogen-bond network involving heme propionate groups. These structural features are essential for elucidating the mechanism for regulating the redox state of cyt c(z).


Subject(s)
Chlorobium/chemistry , Cytochromes c/chemistry , Electron Transport , Chlorobi , Crystallography, X-Ray , Heme/chemistry , Oxidation-Reduction , Protein Structure, Tertiary , Protein Subunits
17.
Photosynth Res ; 104(2-3): 189-99, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20091230

ABSTRACT

Green sulfur bacteria and heliobacteria are strictly anaerobic phototrophs that have homodimeric type 1 reaction center complexes. Within these complexes, highly reducing substances are produced through an initial charge separation followed by electron transfer reactions driven by light energy absorption. In order to attain efficient energy conversion, it is important for the photooxidized reaction center to be rapidly rereduced. Green sulfur bacteria utilize reduced inorganic sulfur compounds (sulfide, thiosulfate, and/or sulfur) as electron sources for their anoxygenic photosynthetic growth. Membrane-bound and soluble cytochromes c play essential roles in the supply of electrons from sulfur oxidation pathways to the P840 reaction center. In the case of gram-positive heliobacteria, the photooxidized P800 reaction center is rereduced by cytochrome c-553 (PetJ) whose N-terminal cysteine residue is modified with fatty acid chains anchored to the cytoplasmic membrane.


Subject(s)
Chlorobi/metabolism , Cytochrome c Group/metabolism , Gram-Positive Bacteria/metabolism , Photosynthesis , Amino Acid Sequence , Cytochrome c Group/chemistry , Electron Transport , Molecular Sequence Data
18.
Photosynth Res ; 102(1): 77-84, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19731072

ABSTRACT

Cytochrome c(z) is found in green sulfur photosynthetic bacteria, and is considered to be the only electron donor to the special pair P840 of the reaction center. It consists of an N-terminal transmembrane domain and a C-terminal soluble domain that binds a single heme group. Large scale expression of the C-terminal functional domain of the cytochrome c(z) (C-cyt c(z)) from the thermophilic bacterium Chlorobium tepidum has been achieved using the Escherichia coli expression system. The C-cyt c(z) expressed has been highly purified, and is stable at room temperature over 10 days of incubation for both reduced and oxidized forms. Spectroscopic measurements indicate that the heme iron in C-cyt c(z) is in a low-spin state and this does not change with the redox state. (1)H-NMR spectra of the oxidized C-cyt c(z) exhibited unusually large paramagnetic chemical shifts for the heme methyl protons in comparison with those of other Class I ferric cytochromes c. Differences in the (1)H-NMR linewidth were observed for some resonances, indicating different dynamic environments for these protons. Crystals of the oxidized C-cyt c(z) were obtained using ammonium sulfate as a precipitant. The crystals diffracted X-rays to a maximum resolution of 1.2 A, and the diffraction data were collected to 1.3 A resolution.


Subject(s)
Chlorobium/metabolism , Cytochromes c/chemistry , Cytochromes c/metabolism , Circular Dichroism , Crystallization , Cytochromes c/isolation & purification , Escherichia coli , Magnetic Resonance Spectroscopy , Protein Structure, Tertiary , Spectrum Analysis, Raman , X-Ray Diffraction
19.
Photosynth Res ; 100(2): 57-65, 2009 May.
Article in English | MEDLINE | ID: mdl-19421892

ABSTRACT

A mutant devoid of cytochrome c-554 (CT0075) in Chlorobium tepidum (syn. Chlorobaculum tepidum) exhibited a decreased growth rate but normal growth yield when compared to the wild type. From quantitative determinations of sulfur compounds in media, the mutant was found to oxidize thiosulfate more slowly than the wild type but completely to sulfate as the wild type. This indicates that cytochrome c-554 would increase the rate of thiosulfate oxidation by serving as an efficient electron carrier but is not indispensable for thiosulfate oxidation itself. On the other hand, mutants in which a portion of the soxB gene (CT1021) was replaced with the aacC1 cassette did not grow at all in a medium containing only thiosulfate as an electron source. They exhibited partial growth yields in media containing only sulfide when compared to the wild type. This indicates that SoxB is not only essential for thiosulfate oxidation but also responsible for sulfide oxidation. An alternative electron carrier or electron transfer path would thus be operating between the Sox system and the reaction center in the mutant devoid of cytochrome c-554. Cytochrome c-554 might function in any other pathway(s) as well as the thiosulfate oxidation one, since even green sulfur bacteria that cannot oxidize thiosulfate contain a cycA gene encoding this electron carrier.


Subject(s)
Bacterial Proteins/metabolism , Chlorobi/metabolism , Chlorobium/metabolism , Cytochrome c Group/deficiency , Mutation/genetics , Photosynthesis , Sulfur/metabolism , Chlorobi/growth & development , Chlorobium/growth & development , Culture Media , Electrons , Oxidation-Reduction , Sulfides/metabolism , Thiosulfates/metabolism
20.
Photochem Photobiol Sci ; 7(10): 1179-87, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18846281

ABSTRACT

Green sulfur bacteria contain chlorophyllous pigments, chlorophyll (Chl) aPD and bacteriochlorophyll (BChl) aP, esterified with Delta2,6-phytadienol and phytol, respectively, which would be produced by reduction of the geranylgeranyl group at the C-17 propionate residue. In the genome of Chlorobium tepidum, two paralogous genes presumably encoding geranylgeranyl reductase, CT1232 and CT2256, are found. The deletion mutants of the CT1232 and CT2256 genes were constructed using an insertional inactivation method in order to clarify the biosynthetic process of the Delta2,6-phytadienyl and phytyl groups in green sulfur bacteria. The compositions of chlorophyllous pigments in the two mutants were determined by LC-MS analysis. The CT2256-deleted mutant accumulated Chl aGG and BChl aGG esterified with geranylgeraniol, indicating that CT2256 was involved in the production of both Delta2,6-phytadienyl and phytyl groups. The relatively high fluorescence emission from chlorosomes in the mutant also suggested some hindrance of the energy transfer from chlorosomes to the reaction center complex. However, the CT1232-deleted mutant almost showed no apparent phenotype compared to the wild type. Furthermore, the purple bacterium Rhodobacter capsulatus mutant defective in the bchP gene was partially complemented with the CT2256 gene; BChl aP was synthesized in the mutant in addition to accumulating other intermediates.


Subject(s)
Bacteriochlorophylls/chemistry , Chlorobium/metabolism , Chlorophyll/metabolism , Esters/metabolism , Mutation/genetics , Oxidoreductases/genetics , Photosynthesis , Bacteriochlorophylls/metabolism , Chlorobium/enzymology , Chlorobium/genetics , Chlorobium/growth & development , Chlorophyll/chemistry , Chromatography, Liquid , Esters/chemistry , Mass Spectrometry , Molecular Conformation , Oxidoreductases/metabolism , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...