Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 128(11): 117401, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35362996

ABSTRACT

We resolve single-shot polariton condensate polarization dynamics, revealing a high degree of circular polarization persistent up to T=170 K. The statistical analysis of pulse-to-pulse polariton condensate polarization elucidates the stochastic nature of the polarization pinning process, which is strongly dependent on the pump laser intensity and polarization. Our experiments show that by spatial trapping and isolating condensates from their noisy environment it is possible to form strongly spin-polarized polariton condensates at high temperatures, offering a promising route to the realization of polariton spin lattices for quantum simulations.

2.
Phys Rev Lett ; 121(3): 037401, 2018 Jul 20.
Article in English | MEDLINE | ID: mdl-30085821

ABSTRACT

A primary limitation of the intensively researched polaritonic systems compared to their atomic counterparts for the study of strongly correlated phenomena and many-body physics is their relatively weak two-particle interactions compared to disorder. Here, we show how new opportunities to enhance such on-site interactions and nonlinearities arise by tuning the exciton-polariton dipole moment in electrically biased semiconductor microcavities incorporating wide quantum wells. The applied field results in a twofold enhancement of exciton-exciton interactions as well as more efficiently driving relaxation towards low energy polariton states, thus, reducing condensation threshold.

3.
Phys Rev Lett ; 119(6): 067401, 2017 Aug 11.
Article in English | MEDLINE | ID: mdl-28949643

ABSTRACT

We demonstrate that multiply coupled spinor polariton condensates can be optically tuned through a sequence of spin-ordered phases by changing the coupling strength between nearest neighbors. For closed four-condensate chains these phases span from ferromagnetic (FM) to antiferromagnetic (AFM), separated by an unexpected crossover phase. This crossover phase is composed of alternating FM-AFM bonds. For larger eight-condensate chains, we show the critical role of spatial inhomogeneities and demonstrate a scheme to overcome them and prepare any desired spin state. Our observations thus demonstrate a fully controllable nonequilibrium spin lattice.

4.
Phys Rev Lett ; 116(10): 106403, 2016 Mar 11.
Article in English | MEDLINE | ID: mdl-27015497

ABSTRACT

Tunable spin correlations are found to arise between two neighboring trapped exciton-polariton condensates which spin polarize spontaneously. We observe a crossover from an antiferromagnetic to a ferromagnetic pair state by reducing the coupling barrier in real time using control of the imprinted pattern of pump light. Fast optical switching of both condensates is then achieved by resonantly but weakly triggering only a single condensate. These effects can be explained as the competition between spin bifurcations and spin-preserving Josephson coupling between the two condensates, and open the way to polariton Bose-Hubbard ladders.

5.
Phys Rev Lett ; 115(8): 089402, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26340220
6.
Phys Rev Lett ; 113(10): 103901, 2014 Sep 05.
Article in English | MEDLINE | ID: mdl-25238359

ABSTRACT

We investigate the propagation and scattering of polaritons in a planar GaAs microcavity in the linear regime under resonant excitation. The propagation of the coherent polariton wave across an extended defect creates phase and intensity patterns with identical qualitative features previously attributed to dark and half-dark solitons of polaritons. We demonstrate that these features are observed for negligible nonlinearity (i.e., polariton-polariton interaction) and are, therefore, not sufficient to identify dark and half-dark solitons. A linear model based on the Maxwell equations is shown to reproduce the experimental observations.

7.
Phys Rev Lett ; 109(1): 016404, 2012 Jul 06.
Article in English | MEDLINE | ID: mdl-23031120

ABSTRACT

We report on the simultaneous observation of spontaneous symmetry breaking and long-range spatial coherence both in the strong- and the weak-coupling regime in a semiconductor microcavity. Under pulsed excitation, the formation of a stochastic order parameter is observed in polariton and photon lasing regimes. Single-shot measurements of the Stokes vector of the emission exhibit the buildup of stochastic polarization. Below threshold, the polarization noise does not exceed 10%, while above threshold we observe a total polarization of up to 50% after each excitation pulse, while the polarization averaged over the ensemble of pulses remains nearly zero. In both polariton and photon lasing regimes, the stochastic polarization buildup is accompanied by the buildup of spatial coherence. We find that the Landau criterion of spontaneous symmetry breaking and Penrose-Onsager criterion of long-range order for Bose-Einstein condensation are met in both polariton and photon lasing regimes.

8.
Phys Rev Lett ; 109(3): 036404, 2012 Jul 20.
Article in English | MEDLINE | ID: mdl-22861878

ABSTRACT

We report on the experimental observation of the nonlinear analogue of the optical spin Hall effect under highly nonresonant circularly polarized excitation of an exciton-polariton condensate in a GaAs/AlGaAs microcavity. The circularly polarized polariton condensates propagate over macroscopic distances, while the collective condensate spins coherently precess around an effective magnetic field in the sample plane performing up to four complete revolutions.

9.
Opt Express ; 16(4): 2351-62, 2008 Feb 18.
Article in English | MEDLINE | ID: mdl-18542313

ABSTRACT

Results demonstrating laser cooling and observation of individual calcium ions in a Penning trap are presented. We show that we are able to trap, cool, image and manipulate the shape of very small ensembles of ions sufficiently well to produce two-ion 'Coulomb crystals' aligned along the magnetic field of a Penning trap. Images are presented which show the individual ions to be resolved in a two-ion crystal. A distinct change in the configuration of such a crystal is observed as the experimental parameters are changed. These structures could eventually be used as building blocks in a Penning trap based quantum computer.

SELECTION OF CITATIONS
SEARCH DETAIL
...