Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
In Vitro Cell Dev Biol Anim ; 47(4): 273-9, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21359819

ABSTRACT

Two-pore domain K(+) channels are widely expressed in many types of cells, and have various important functions, especially maintaining the resting membrane potential. In the previous report, we have confirmed the presence of several kinds of two-pore domain K(+) channels in the periodontal ligament (PDL) fibroblasts. It is well known that dexamethasone (Dex) regulates the functions of various kinds of ion channels. In this work, we investigate if Dex affects the gene expressions of the two-pore domain K(+) channels in the PDL fibroblasts. We also examined the effects of other steroid hormones on the K(+) channels gene expression. The mRNA levels of two-pore domain K(+) channels in human PDL fibroblasts were examined in the presence or absence of Dex by RT-PCR. The effects of other steroid hormones (aldosterone, estrogen, 1α,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)], and retinoic acid) were also examined. Dex significantly induced the expression of TASK-1 and TWIK-2 in mRNA levels in both a dose- and a time-dependent manner. The stimulatory effects of Dex were completely abolished by a glucocorticoid receptor antagonist. 1,25-(OH)(2)D(3) also increased the TASK-1 mRNA levels but had no effect on TWIK-2 expression. Dex, one of the potent glucocorticoid, probably have a protective role against external stimuli by maintaining the membrane potential of PDL fibroblasts through the up-regulation of TASK-1 and TWIK-2 K(+) channels.


Subject(s)
Dexamethasone/pharmacology , Fibroblasts/metabolism , Gene Expression Regulation/drug effects , Nerve Tissue Proteins/metabolism , Periodontal Ligament/cytology , Potassium Channels, Tandem Pore Domain/metabolism , Cells, Cultured , DNA Primers/genetics , Dose-Response Relationship, Drug , Humans , Reverse Transcriptase Polymerase Chain Reaction , Time Factors
2.
Drug Metab Rev ; 39(2-3): 457-65, 2007.
Article in English | MEDLINE | ID: mdl-17786632

ABSTRACT

Human periodontal ligament (PDL) fibroblasts expressed following two-pore-domain K(+) channels, TWIK-2 > TREK-1 > TWIK-1 >> TASK-1 > TRAAK > TASK-2. TREK-2 message was not detectable. We found the presence of arachidonic acid-activated and mechanical stress-sensitive K(+) channel, TREK-1, in the PDL fibroblasts by patch-clamp technique. It was also found the significant increase of intracellular concentration of arachidonic acid upon the application of cyclic stretch. Therefore, we suppose that the mechanical stretch due to the mastication activates phospholipase A(2) to release arachidonic acid (AA) from membrane, then, the released AA activates TREK-1. Thus, TREK-1 K(+) channels may play a protective role to maintain the negative membrane potential of PDL fibroblasts against the environmental stimuli.


Subject(s)
Arachidonic Acid/physiology , Periodontal Ligament/metabolism , Potassium Channels, Tandem Pore Domain/physiology , Cells, Cultured , Chromatography, High Pressure Liquid , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Fibroblasts/metabolism , Humans , Membrane Lipids/metabolism , Patch-Clamp Techniques , Periodontal Ligament/drug effects , Potassium Channels, Tandem Pore Domain/drug effects , RNA/biosynthesis , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction , Stress, Mechanical
3.
Dev Growth Differ ; 27(4): 419-433, 1985.
Article in English | MEDLINE | ID: mdl-37280834

ABSTRACT

The organization center of Cynops pyrrhogaster was divided into Parts 1, 2 and 3 of equal size (0.3×0.4 mm2 ) with presumptive fates as pharyngeal, pharyngeal+prechordal+trunk notochord, and trunk-tail notochord, respectively. Movements and changes in size and shape of each part were followed through gastrulation. Differentiation tendencies of each part were examined under three conditions: I, isolated; II, sandwiched with presumptive ectoderm; 111, sandwiched with presumptive ectoderm after preculture in isolation for various times. In I, Parts 2 and 3 differentiated into dorsal mesoderm. In II, each part induced dorsal mesoderm and neural tissues, the frequency being highest in Part 2 and lowest in Part 3. In III, Parts 1 and 2 realized their presumptive fates, through changes in inductive capacities from trunk-tail to head. This change progressed rapidly in Part 1, and slowly in Part 2. Part 3 required induction by neighbouring Part 2 to realize its presumptive fate. Changes of inductive capacity of Parts 1 and 2 respectively, were chronologically similar in normal development and in preculture experiments. Lastly, the primary presumptive pharyngeal zone at blastula was proposed to act as an initiator of the organization center, its programmed information being transmitted to Part 2, and then to Part 3.

4.
Dev Growth Differ ; 23(1): 51-58, 1981.
Article in English | MEDLINE | ID: mdl-37281685

ABSTRACT

The inducing times for spinal cord and deuterencephalon in Cynops gastrula were determined by the sandwich method. The extreme posterior of the archenteron roof at the slit-blastopore stage (tail organizer) was used as an inducer. First, the presumptive ectoderm of the earliest gastrula (0-hr stage) was put in contact with the organizer for 6 to 24 hr. Spinal cord and deuterencephalon were induced in almost all explants after 24 and 21 hr of contact, respectively, indicating that 24 hr is enough time for differentiations of both spinal cord and deuterencephalon. Next, presumptive ectoderm of 6- to 21-hr exogastrulae was put in contact with the organizer until the 24-hr stage. Results showed that the net inducing times for spinal cord and deuterencephalon were 18 and 15 hr, respectively, and that neural competence appeared in the presumptive ectoderm at the 6-hr stage (straight-blastopore stage).

5.
Dev Growth Differ ; 22(5): 805-812, 1980.
Article in English | MEDLINE | ID: mdl-37281325

ABSTRACT

Brain formation in variously aged presumptive ectoderms of Cynops pyrrhogaster under the influence of the head organizer was examined by the sandwich method. The head organizer was obtained from the middle portion of the archenteron roof at the slit-blastopore stage. The presumptive ectoderm was taken from 0- to 36-hr exogastrulae. Exogastrulae were prepared from the earliest gastrulae just before invagination (0-hr embryos). The presumptive neural plate overlying the archenteron roof used as organizer was cultivated in an envelope of belly ectoderm from an early neurula. The following results were obtained: 1) Brain induction was almost entirely restricted to explants covered with 6-hr ectoderm and its frequency was low. 2) The presumptive neural plate above the head organizer was almost completely determined as neural tissues. 3) The head organizer showed a tendency to differentiate into more endodermal and less mesodermal tissues than those expected from its prospective fate. Brain induction in normal development and the relationship between neural tissue formation in variously aged presumptive ectoderms and the time necessary for neural induction are discussed.

6.
Wilehm Roux Arch Dev Biol ; 187(1): 13-23, 1979 Mar.
Article in English | MEDLINE | ID: mdl-28304917

ABSTRACT

The effect of aging on the neural competence of the presumptive ectoderm of the early gastrula, and the effect of aged ectoderm on the differentiation of the still uninvaginated dorsal blastoporal lip at the small yolk-plug stage - representing the trunk organizer - were examined by the sandwich method inCynops pyrrhogaster.The presumptive ectoderm to be used as reaction system was taken from 0 to 36 h exogastrulae obtained by operation at the early gastrula stage and combined with trunk organizer. In the 0 to 12 h explants typical trunktail structures were formed. With further aging of the presumptive ectoderm a decrease in frequency of spinal cord, notochord, and muscle and a simultaneous increase in frequency of mesenchyme and mesothelium were observed. In the 30 and 36 h explants neural competence had largely disappeared, the frequency of notochord and muscle become very low and their differentiation very poor, whereas the frequency of mesenchyme and mesothelium reached very high levels.We infer a reciprocal relationship between the induced spinal cord and the differentiation of notochord and muscle, as well as a transformation of notochordal material into mesenchyme and mesothelium under the influence of the aged ectoderm. The mode of action of the trunk organizer in normal development is discussed.

7.
Dev Growth Differ ; 21(6): 509-517, 1979.
Article in English | MEDLINE | ID: mdl-37281793

ABSTRACT

The effect of aging on the neural competence of the presumptive ectoderm in gastrulae of Cynops pyrrhogaster and the effect of aged ectoderm on differentiation of the extreme posterior of the archenteric roof in the slit-blastopore stage were examined by a sandwich method in which this organizer was wrapped in the presumptive ectoderm taken from the 0- to 42-hr aged exogastrulae. Vital staining showed that this organizer becomes mainly tail notochord. Therefore it should be called tail or trunk-tail organizer. In 0- to 18-hr explants, typical trunk-tail structures were formed. With further aging of the presumptive ectoderm, a decrease of spinal cord and muscle with a concomitant increase of mesenchyme and mesothelium was observed. In 36- (corresponding to the slit-blastopore-initial neural stage) and 42-hr explants, neural competence had disappeared markedly. The notochord appeared in all explants, indicating this organizer is more firmly determined than the uninvaginated dorsal lip in small yolk-plug stage. Conclusively, this organizer does not play an important role in the induction of the neural plate, but induces the tail in normal development.

SELECTION OF CITATIONS
SEARCH DETAIL
...