Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosurg ; 136(4): 1052-1061, 2022 04 01.
Article in English | MEDLINE | ID: mdl-34560661

ABSTRACT

OBJECTIVE: The authors previously showed that combined evaluation of changes in intraoperative voluntary movement (IVM) during awake craniotomy and transcortical motor evoked potentials (MEPs) was useful for predicting postoperative motor function in 30 patients with precentral gyrus glioma. However, the validity of the previous report is limited to precentral gyrus gliomas. Therefore, the current study aimed to validate whether the combined findings of IVM during awake craniotomy and transcortical MEPs were useful for predicting postoperative motor function of patients with a glioma within or close to motor-related areas and not limited to the precentral gyrus. METHODS: The authors included 95 patients with gliomas within or close to motor-related areas who were treated between April 2000 and May 2020. All tumors were resected with IVM monitoring during awake craniotomy and transcortical MEP monitoring. Postoperative motor function was classified into four categories: "no change" or "declined," the latter of which was further categorization as "mild," "moderate," or "severe." The authors defined moderate and severe deficits as those that impact daily life. RESULTS: Motor function 6 months after surgery was classified as no change in 71 patients, mild in 18, moderate in 5, and severe in 1. Motor function at 6 months after surgery significantly correlated with IVM (p < 0.0001), transcortical MEPs (decline ≤ or > 50%) (p < 0.0001), age, preoperative motor dysfunction, extent of resection, and ischemic change on postoperative MRI. Thirty-two patients with no change in IVM showed no change in motor function at 6 months after surgery. Five of 34 patients (15%) with a decline in IVM and a decline in MEPs ≤ 50% had motor dysfunction with mild deficits 6 months after surgery. Furthermore, 19 of 23 patients (83%) with a decline in IVM and decline in MEPs > 50% had a decline in motor function, including 13 patients with mild, 5 with moderate, and 1 with severe deficits. Six patients with moderate or severe deficits had the lowest MEP values, at < 100 µV. CONCLUSIONS: This study validated the utility of combined application of IVM during awake craniotomy and transcortical MEP monitoring to predict motor function at 6 months after surgery in patients with a glioma within or close to motor-related areas, not limited to the precentral gyrus. The authors also validated the usefulness of the cutoff value, 100 µV, in MEP monitoring.


Subject(s)
Brain Neoplasms , Glioma , Motor Cortex , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Craniotomy , Evoked Potentials, Motor , Glioma/diagnostic imaging , Glioma/surgery , Humans , Motor Cortex/diagnostic imaging , Motor Cortex/surgery , Wakefulness
2.
J Neurosurg ; 132(4): 987-997, 2019 Mar 15.
Article in English | MEDLINE | ID: mdl-30875689

ABSTRACT

OBJECTIVE: Resection of gliomas in the precentral gyrus carries a risk of severe motor dysfunction. To prevent permanent, severe postoperative motor dysfunction, reliable intraoperative predictors of postoperative function are required. Since 2005, the authors have removed gliomas in the precentral gyrus with combined functional mapping and estimation of intraoperative voluntary movement (IVM) during awake craniotomy and transcortical motor evoked potentials (MEPs). The purpose of the current study was to evaluate whether intraoperative findings of combined monitoring of IVM during awake craniotomy and transcortical MEP monitoring were useful for predicting postoperative motor function of patients with gliomas in the precentral gyrus. METHODS: The current study included 30 patients who underwent resection of precentral gyrus gliomas during awake craniotomy from April 2000 to January 2018. All tumors were removed with monitoring of IVM during awake craniotomy and transcortical MEPs. Postoperative motor function was classified as stable or declined, with the extent of decline categorized as mild, moderate, or severe. We defined moderate and severe deficits were those that hindered daily life. RESULTS: In 28 of 30 cases, available waveforms were obtained with transcortical MEPs. The mean extent of resection (EOR) was 93%. Relative to preoperative status, motor function 6 months after surgery was considered stable in 20 patients and was considered to show mild decline in 7, moderate decline in 2, and severe decline in 1. Motor function 6 months after surgery was significantly correlated with IVM (p = 0.0096), changes in transcortical MEPs (decline ≤ or > 50%) (p = 0.0163), EOR, and ischemic lesions on postoperative MRI. Six patients with no change in IVM showed stable motor function 6 months after surgery. Only 2 patients with a decline in IVM and a decline in MEPs ≤ 50% had a decline in motor function 6 months after surgery (18%; 2/11 patients), whereas 11 patients with a decline in IVM and a decline in MEPs > 50% had such a decline in motor function (73%; 8/11 patients) including 2 patients with moderate and 1 with severe deficits. Three patients with moderate or severe motor deficits showed the lowest MEP values (< 100 µV). CONCLUSIONS: Combined judgment from monitoring of IVM during awake craniotomy and transcortical MEPs is useful for predicting postoperative motor function during removal of gliomas in the precentral gyrus. Maximum resection was achieved with an acceptable morbidity rate. Thus, these tumors should not be considered unresectable.

SELECTION OF CITATIONS
SEARCH DETAIL
...