Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Immunol Cell Biol ; 99(8): 894-906, 2021 09.
Article in English | MEDLINE | ID: mdl-34080230

ABSTRACT

Regulatory T cells (Tregs) play a critical role in immune regulation and peripheral tolerance. While different types of Tregs have been identified in both mice and humans, much of our understanding about how these cells maintain immune homeostasis is derived from animal models. In this study, we examined two distinct human lymphoid organs to understand how repeated exposure to infections at the mucosal surface influences the phenotype and tissue localization of Tregs. We show that while Tregs in both tonsils and spleen express a tissue-resident phenotype, they accumulate in greater numbers in tonsils. Tonsillar-resident Tregs exhibit a highly suppressive phenotype with significantly increased expression of CD39, ICOS and CTLA-4 compared with their counterparts in circulation or in the spleen. Functionally, resident Tregs are able effectively to suppress T cell proliferation. We further demonstrate that tonsillar-resident Tregs share key features of T follicular helper cells. Spatial analysis reveals that the vast majority of resident Tregs are localized at the border of the T-zone and B cell follicle, as well as within the lymphocyte pockets enriched with resident memory T cells. Together our findings suggest that resident Tregs are strategically co-localized to maintain immune homeostasis at sites of recurrent inflammation.


Subject(s)
Lymphocyte Activation , T-Lymphocytes, Regulatory , Animals , B-Lymphocytes , Humans , Mice , Phenotype
2.
Sci Rep ; 10(1): 18825, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139745

ABSTRACT

Smoking increases the risk of cardiovascular diseases. The present study was designed to determine the effects of 2-month exposure to cigarette smoke (CS) on proteins in the left ventricles of spontaneously hypertensive rats (SHR) and to identify the molecular targets associated with the pathogenesis/progression of CS-induced cardiac hypertrophy. SHR and Wistar Kyoto rats (WKY) were exposed to CS at low (2 puffs/min for 40 min) or high dose (2 puffs/min for 120 min), 5 days a week for 2 months. Using the two-dimensional fluorescence difference gel electrophoresis combined with MALDI-TOF/TOF tandem mass spectrometry, we compared differences in the expression levels of proteins in the whole left ventricles induced by long-term smoking. High-dose CS mainly caused cardiac hypertrophy in SHR, but not WKY, but no change in blood pressure. Proteomic analysis identified 30 protein spots with significant alterations, with 14 up-regulated and 16 down-regulated proteins in the left ventricles of CS-exposed SHR, compared with control SHR. Among these proteins, two members of the heat shock proteins (HSP70 and HSP20) showed significant up-regulation in the left ventricles of CS high-dose SHR, and the results were confirmed by western blot analysis. Our findings suggested that HSPs play an important role in regulation of CS-induced cardiac hypertrophy.


Subject(s)
Cardiomegaly/etiology , Cardiomegaly/genetics , Cigarette Smoking/adverse effects , Cigarette Smoking/genetics , HSP20 Heat-Shock Proteins/metabolism , HSP70 Heat-Shock Proteins/metabolism , Proteomics/methods , Animals , Cardiomegaly/metabolism , Gene Expression , HSP20 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , Heart Ventricles/metabolism , Rats, Inbred SHR , Rats, Inbred WKY , Risk , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...