Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 29(1): 149-157.e3, 2019 01 07.
Article in English | MEDLINE | ID: mdl-30581024

ABSTRACT

The Americas were the last inhabitable continents to be occupied by humans, with a growing multidisciplinary consensus for entry 15-25 thousand years ago (kya) from northeast Asia via the former Beringia land bridge [1-4]. Autosomal DNA analyses have dated the separation of Native American ancestors from the Asian gene pool to 23 kya or later [5, 6] and mtDNA analyses to ∼25 kya [7], followed by isolation ("Beringian Standstill" [8, 9]) for 2.4-9 ky and then a rapid expansion throughout the Americas. Here, we present a calibrated sequence-based analysis of 222 Native American and relevant Eurasian Y chromosomes (24 new) from haplogroups Q and C [10], with four major conclusions. First, we identify three to four independent lineages as autochthonous and likely founders: the major Q-M3 and rarer Q-CTS1780 present throughout the Americas, the very rare C3-MPB373 in South America, and possibly the C3-P39/Z30536 in North America. Second, from the divergence times and Eurasian/American distribution of lineages, we estimate a Beringian Standstill duration of 2.7 ky or 4.6 ky, according to alternative models, and entry south of the ice sheet after 19.5 kya. Third, we describe the star-like expansion of Q-M848 (within Q-M3) starting at 15 kya [11] in the Americas, followed by establishment of substantial spatial structure in South America by 12 kya. Fourth, the deep branches of the Q-CTS1780 lineage present at low frequencies throughout the Americas today [12] may reflect a separate out-of-Beringia dispersal after the melting of the glaciers at the end of the Pleistocene.


Subject(s)
American Indian or Alaska Native/genetics , Chromosomes, Human, Y/genetics , DNA, Ancient/analysis , Genotype , Human Migration , Archaeology , DNA, Mitochondrial/genetics , Female , Genome, Human/genetics , Humans , Male
3.
J Hum Genet ; 61(7): 593-603, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27030145

ABSTRACT

Many single-nucleotide polymorphisms (SNPs) in the non-recombining region of the human Y chromosome have been described in the last decade. High-coverage sequencing has helped to characterize new SNPs, which has in turn increased the level of detail in paternal phylogenies. However, these paternal lineages still provide insufficient information on population history and demography, especially for Native Americans. The present study aimed to identify informative paternal sublineages derived from the main founder lineage of the Americas-haplogroup Q-L54-in a sample of 1841 native South Americans. For this purpose, we used a Y-chromosomal genotyping multiplex platform and conventional genotyping methods to validate 34 new SNPs that were identified in the present study by sequencing, together with many Y-SNPs previously described in the literature. We updated the haplogroup Q phylogeny and identified two new Q-M3 and three new Q-L54*(xM3) sublineages defined by five informative SNPs, designated SA04, SA05, SA02, SA03 and SA29. Within the Q-M3, sublineage Q-SA04 was mostly found in individuals from ethnic groups belonging to the Tukanoan linguistic family in the northwest Amazon, whereas sublineage Q-SA05 was found in Peruvian and Bolivian Amazon ethnic groups. Within Q-L54*, the derived sublineages Q-SA03 and Q-SA02 were exclusively found among Coyaima individuals (Cariban linguistic family) from Colombia, while Q-SA29 was found only in Maxacali individuals (Jean linguistic family) from southeast Brazil. Furthermore, we validated the usefulness of several published SNPs among indigenous South Americans. This new Y chromosome haplogroup Q phylogeny offers an informative paternal genealogy to investigate the pre-Columbian history of South America.Journal of Human Genetics advance online publication, 31 March 2016; doi:10.1038/jhg.2016.26.


Subject(s)
Chromosomes, Human, Y , Genetics, Population , Indians, South American/genetics , Alleles , Evolution, Molecular , Genotype , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Microsatellite Repeats , Mutation , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...