Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 75: 128808, 2022 11 01.
Article in English | MEDLINE | ID: mdl-35609741

ABSTRACT

Novel bacterial topoisomerase inhibitors (NBTIs) are the newest members of gyrase inhibitor broad-spectrum antibacterial agents, represented by the most advanced member, gepotidacin, a 4-amino-piperidine linked NBTI, which is undergoing phase III clinical trials for treatment of urinary tract infections (UTI). We have extensively reported studies on oxabicyclooctane linked NBTIs, including AM-8722. The present study summarizes structure activity relationship (SAR) of AM-8722 leading to identification of 7-fluoro-1-cyanomethyl-1,5-naphthyridin-2-one based NBTI (16, AM-8888) with improved potency and spectrum (MIC values of 0.016-4 µg/mL), with Pseudomonas aeruginosa being the least sensitive strain (MIC 4 µg/mL).


Subject(s)
Anti-Bacterial Agents , Topoisomerase Inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV , Microbial Sensitivity Tests , Staphylococcus aureus/metabolism , Structure-Activity Relationship , Thioinosine/analogs & derivatives , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology
2.
J Med Chem ; 63(17): 9003-9019, 2020 09 10.
Article in English | MEDLINE | ID: mdl-32407089

ABSTRACT

Formyl peptide receptor 2 (FPR2) agonists can stimulate resolution of inflammation and may have utility for treatment of diseases caused by chronic inflammation, including heart failure. We report the discovery of a potent and selective FPR2 agonist and its evaluation in a mouse heart failure model. A simple linear urea with moderate agonist activity served as the starting point for optimization. Introduction of a pyrrolidinone core accessed a rigid conformation that produced potent FPR2 and FPR1 agonists. Optimization of lactam substituents led to the discovery of the FPR2 selective agonist 13c, BMS-986235/LAR-1219. In cellular assays 13c inhibited neutrophil chemotaxis and stimulated macrophage phagocytosis, key end points to promote resolution of inflammation. Cardiac structure and functional improvements were observed in a mouse heart failure model following treatment with BMS-986235/LAR-1219.


Subject(s)
Pyrrolidinones/chemistry , Receptors, Formyl Peptide/agonists , Receptors, Lipoxin/agonists , Animals , Chemotaxis/drug effects , Disease Models, Animal , Drug Evaluation, Preclinical , HEK293 Cells , Heart Failure/pathology , Heart Failure/prevention & control , Humans , Macrophages/cytology , Macrophages/immunology , Macrophages/metabolism , Mice , Microsomes, Liver/metabolism , Neutrophils/cytology , Neutrophils/physiology , Phagocytosis/drug effects , Pyrrolidinones/metabolism , Pyrrolidinones/pharmacology , Pyrrolidinones/therapeutic use , Receptors, Formyl Peptide/genetics , Receptors, Formyl Peptide/metabolism , Receptors, Lipoxin/genetics , Receptors, Lipoxin/metabolism , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 25(17): 3636-43, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26141771

ABSTRACT

Oxabicyclooctane linked 1,5-naphthyridinyl-pyridoxazinones are novel broad-spectrum bacterial topoisomerase inhibitors (NBTIs) targeting bacterial DNA gyrase and topoisomerase IV at a site different than quinolones. Due to lack of cross-resistance to known antibiotics they present excellent opportunity to combat drug-resistant bacteria. A structure activity relationship of the pyridoxazinone moiety is described in this Letter. Chemical synthesis and activities of NBTIs with substitutions at C-3, C-4 and C-7 of the pyridoxazinone moiety with halogens, alkyl groups and methoxy group has been described. In addition, substitutions of the linker NH proton and its transformation into amide analogs of AM-8085 and AM-8191 have been reported. Fluoro, chloro, and methyl groups at C-3 of the pyridoxazinone moiety retained the potency and spectrum. In addition, a C-3 fluoro analog showed 4-fold better oral efficacy (ED50 3.9 mg/kg) as compared to the parent AM-8085 in a murine bacteremia model of infection of Staphylococcus aureus. Even modest polarity (e.g., methoxy) is not tolerated at C-3 of the pyridoxazinone unit. The basicity and NH group of the linker is important for the activity when CH2 is at the linker position-8. However, amides (with linker position-8 ketone) with a position-7 NH or N-methyl group retained potency and spectrum suggesting that neither basicity nor hydrogen-donor properties of the linker amide NH is essential for the activity. This would suggest likely an altered binding mode of the linker position-7,8 amide containing compounds. The amides showed highly improved hERG (functional IC50 >30 µM) profile.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cyclooctanes/chemistry , Drug Evaluation, Preclinical/methods , Structure-Activity Relationship , Topoisomerase Inhibitors/chemistry , Administration, Oral , Animals , Anti-Bacterial Agents/administration & dosage , Chemistry Techniques, Synthetic , DNA Topoisomerase IV/antagonists & inhibitors , ERG1 Potassium Channel , Ether-A-Go-Go Potassium Channels/metabolism , Heterocyclic Compounds, 2-Ring/chemistry , Heterocyclic Compounds, 2-Ring/pharmacology , Mice , Microbial Sensitivity Tests , Naphthyridines/chemistry , Naphthyridines/pharmacology , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity , Topoisomerase Inhibitors/pharmacology
4.
Bioorg Med Chem Lett ; 25(17): 3630-5, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26152426

ABSTRACT

Oxabicyclooctane linked novel bacterial topoisomerase inhibitors (NBTIs) are new class of recently reported broad-spectrum antibacterial agents. They target bacterial DNA gyrase and topoisomerase IV and bind to a site different than quinolones. They show no cross-resistance to known antibiotics and provide opportunity to combat drug-resistant bacteria. A structure activity relationship of the C-2 substituted ether analogs of 1,5-naphthyridine oxabicyclooctane-linked NBTIs are described. Synthesis and antibacterial activities of a total of 63 analogs have been summarized representing alkyl, cyclo alkyl, fluoro alkyl, hydroxy alkyl, amino alkyl, and carboxyl alkyl ethers. All compounds were tested against three key strains each of Gram-positive and Gram-negative bacteria as well as for hERG binding activities. Many key compounds were also tested for the functional hERG activity. Six compounds were evaluated for efficacy in a murine bacteremia model of Staphylococcus aureus infection. Significant tolerance for the ether substitution (including polar groups such as amino and carboxyl) at C-2 was observed for S. aureus activity however the same was not true for Enterococcus faecium and Gram-negative strains. Reduced clogD generally showed reduced hERG activity and improved in vivo efficacy but was generally associated with decreased overall potency. One of the best compounds was hydroxy propyl ether (16), which mainly retained the potency, spectrum and in vivo efficacy of AM8085 associated with the decreased hERG activity and improved physical property.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Naphthyridines/chemistry , Structure-Activity Relationship , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacokinetics , Chemistry Techniques, Synthetic , Cyclooctanes/chemistry , DNA Gyrase/metabolism , Drug Evaluation, Preclinical/methods , ERG1 Potassium Channel , Enterococcus faecium/drug effects , Ether-A-Go-Go Potassium Channels/metabolism , Mice, Inbred C57BL , Microbial Sensitivity Tests , Rats, Sprague-Dawley , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Topoisomerase II Inhibitors/chemistry , Topoisomerase II Inhibitors/pharmacology
5.
Bioorg Med Chem Lett ; 25(12): 2473-8, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-25978963

ABSTRACT

Novel bacterial topoisomerase inhibitors (NBTIs) are a new class of broad-spectrum antibacterial agents targeting bacterial Gyrase A and ParC and have potential utility in combating antibiotic resistance. (R)-Hydroxy-1,5-naphthyridinone left-hand side (LHS) oxabicyclooctane linked pyridoxazinone right-hand side (RHS) containing NBTIs showed a potent Gram-positive antibacterial profile. SAR around the RHS moiety, including substitutions around pyridooxazinone, pyridodioxane, and phenyl propenoids has been described. A fluoro substituted pyridoxazinone showed an MIC against Staphylococcus aureus of 0.5 µg/mL with reduced functional hERG activity (IC50 333 µM) and good in vivo efficacy [ED90 12 mg/kg, intravenous (iv) and 15 mg/kg, oral (p.o.)]. A pyridodioxane-containing NBTI showed a S. aureus MIC of 0.5 µg/mL, significantly improved hERG IC50 764 µM and strong efficacy of 11 mg/kg (iv) and 5 mg/kg (p.o.). A phenyl propenoid series of compounds showed potent antibacterial activity, but also showed potent hERG binding activity. Many of the compounds in the hydroxy-tricyclic series showed strong activity against Acinetobacter baumannii, but reduced activity against Escherichia coli and Pseudomonas aeruginosa. Bicyclic heterocycles appeared to be the best RHS moiety for the hydroxy-tricyclic oxabicyclooctane linked NBTIs.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Naphthyridines/chemistry , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology , Acinetobacter baumannii/drug effects , Anti-Bacterial Agents/chemical synthesis , Bacterial Proteins/antagonists & inhibitors , Bacterial Proteins/metabolism , DNA Gyrase/chemistry , DNA Gyrase/metabolism , Escherichia coli/drug effects , Microbial Sensitivity Tests , Oxazoles/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects , Structure-Activity Relationship , Topoisomerase Inhibitors/chemical synthesis
6.
Bioorg Med Chem Lett ; 25(11): 2409-15, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-25911300

ABSTRACT

Bacterial resistance is rapidly growing, necessitating the need to discover new agents. Novel bacterial topoisomerase inhibitors (NBTIs) are new class of broad-spectrum antibacterial agents targeting bacterial DNA gyrase and topoisomerase IV. This class of inhibitors binds to an alternative binding site relative to fluoroquinolones and shows no cross-resistance to quinolones. NBTIs consist of three structural motifs. A structure activity relationship of the left hand motif 1,5-naphthyridine of oxabicyclooctane-linked NBTIs is described. Fifty five compounds were evaluated against a panel of key Gram-positive and Gram-negative strains of bacteria, as well as for hERG activity and five compounds were tested for in vivo efficacy in murine model of Staphylococcus aureus infection. These studies suggest that only a narrow range (activating and deactivating) of substitutions at C-2 and C-7 are tolerated for optimal antibacterial activity and spectrum. An alkoxy (methoxy) and CN at C-2, and a halogen and hydroxyl at C-7, appeared to be preferred in this series. Substitutions on the other three carbons generally have detrimental effect on the activity. No clear hERG activity SAR emerged from these substitutions.


Subject(s)
DNA Topoisomerases/metabolism , Staphylococcal Infections/drug therapy , Staphylococcus aureus/drug effects , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology , Animals , Mice , Molecular Structure , Staphylococcal Infections/microbiology , Structure-Activity Relationship
7.
Chem Pharm Bull (Tokyo) ; 57(9): 920-36, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19721252

ABSTRACT

The title compounds were synthesized by the efficient route previously explored for the synthesis of enantiomeric pairs of thiolactomycin and its 3-demethyl derivative. These studies were carried out to prove the flexibility of the previously explored synthetic route to natural thiolactomycin (TLM) 1 and to examine the structure-activity relationship on the 5-position of 1. While all of the synthesized congeners lacked in vitro antibacterial activity, these studies led us to find 5-(alk-2-enyl)-TLM (ent-4d) which exhibits mammalian type I fatty acid synthase (FAS) inhibitory activity equal to that of C75, a potent inhibitor reported previously. It was also found that 5-[(E)-cycloalk-2-enylidenemethyl]-TLM (ent-5c) exhibited slightly less potent mammalian type I FAS inhibitory activity than C75.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Fatty Acid Synthesis Inhibitors/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Fatty Acid Synthases/antagonists & inhibitors , Fatty Acid Synthases/metabolism , Fatty Acid Synthesis Inhibitors/chemistry , Fatty Acid Synthesis Inhibitors/pharmacology , Stereoisomerism , Structure-Activity Relationship , Thiophenes/chemical synthesis , Thiophenes/chemistry , Thiophenes/pharmacology
8.
Bioorg Med Chem Lett ; 18(20): 5598-600, 2008 Oct 15.
Article in English | MEDLINE | ID: mdl-18805004

ABSTRACT

The title congeners were synthesized by employing our efficient synthetic route previously explored for preparing enantiomeric pairs of thiolactomycin and its 3-demethyl derivative. While all the synthesized congeners lacked in vitro antibacterial activity, some of the congeners bearing an (E)-cyclohept-2-enylidenemethyl or an (E)-cyclooct-2-enylidenemethyl group were found to exhibit more potent type I FAS inhibitory activity than (S)-3-demethylthiolactomycin having an unnatural configuration.


Subject(s)
Chemistry, Pharmaceutical/methods , Fatty Acid Synthases/antagonists & inhibitors , Thiophenes/chemical synthesis , Animals , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Cell Line , Drug Design , Fatty Acid Synthases/chemistry , Humans , Inhibitory Concentration 50 , Microbial Sensitivity Tests , Models, Chemical , Molecular Conformation , Structure-Activity Relationship , Thiophenes/chemistry , Thiophenes/pharmacology
9.
Bioorg Med Chem Lett ; 17(14): 4070-4, 2007 Jul 15.
Article in English | MEDLINE | ID: mdl-17507223

ABSTRACT

Twelve enantiomeric pairs of 5-vinylthiolactomycin congeners were synthesized by employing our efficient synthetic route previously explored for the synthesis of enantiomeric pairs of thiolactomycin and its 3-demethyl derivative. From the biological activity assay carried out using the obtained congeners along with enantiomeric pairs of thiolactomycin and its 3-demethyl derivative previously prepared, it appeared evident that in vitro antibacterial and mammalian type I FAS inhibitory activity of thiolactomycin congeners can be cleanly separated by changing not only the structure but also the absolute configuration of the side chain at the C(5)-position. These studies led us to explore (S)-3-demethyl-5-(pent-1-enyl)thiolactomycin derivative [(S)-4-hydroxy-5-methyl-5-(pent-1-enyl)-5H-thiophen-2-one] which exhibits type I FAS inhibitory activity equal to that of C75, the potent inhibitor so far reported, with complete loss of in vitro antibacterial activity.


Subject(s)
Thiophenes/chemical synthesis , Thiophenes/pharmacology , Animals , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/pharmacology , Fatty Acid Synthases/antagonists & inhibitors , Stereoisomerism , Structure-Activity Relationship , Thiophenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...