Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-12829003

ABSTRACT

A rapid yet reliable chemical diagnosis for dihydropyrimidine dehydrogenase (DHPD) deficiency, and possibly dihydropyrimidinase (DHP) deficiency in cancer patients, prior to therapy with pyrimidine analogues such as 5-fluorouracil, is desired for prevention of severe side-effects by these drugs. We have reported the basic separation and quantitation technology for pyrimidine metabolites using gas chromatography-mass spectrometry. A proposal to use the number (n) of standard deviations (SD) above the normal mean, as the index of the excessive urinary excretion of the metabolites appears not to be commonly used. When used, the values were too small, such as two or three, even in genetic disorders. Here, we applied the method to 11 urine specimens from proven cases including two DHP carriers and proved how specific the method is, because "n"-values were markedly large for thymine (T), uracil (U) and/or dihydrothymine (DHT) and dihydrouracil (DHU). In three cases with DHPD deficiency, two were siblings, one with symptoms and the other without, n was 12 for T and 5.9 for U, and 5-hydroxymethyluracil was distinctly detected. These values indicate that the nature of genetic mutation relates closely to the degree of metabolite accumulation in pyrimidine disorders. In six patients with DHP deficiency, n was 8.4-12 for DHT and 7.2-11 for DHU. Many mutations are known for both genes and the assay of residual enzyme activity may be time-consuming or invasive especially for those with DHP deficiency. Thus, this noninvasive yet comprehensive urinalysis has great value for those without a family history, as the first trial, before DNA or the enzyme assay. Our findings again raise the question whether the metabolic block really causes the symptoms found in pyrimidine disorders.


Subject(s)
Amidohydrolases/urine , Dihydrouracil Dehydrogenase (NADP)/urine , Gas Chromatography-Mass Spectrometry/methods , Metabolism, Inborn Errors/diagnosis , Adolescent , Adult , Child , Child, Preschool , Female , Humans , Male , Metabolism, Inborn Errors/urine
2.
Article in English | MEDLINE | ID: mdl-12829005

ABSTRACT

Lesch-Nyhan syndrome (LNS) is caused by a severe deficiency of hypoxanthine-guanine phosphoribosyltransferase (HPRT) and clinically characterized by self-injurious behavior and nephrolithiasis; the latter is treatable with allopurinol, an inhibitor of xanthine oxidase which converts xanthine and hypoxanthine into uric acid. In the HPRT gene, more than 200 different mutations are known, and de novo mutation occurs at a high rate. Thus, there is a great need to develop a highly specific method to detect patients with HPRT dysfunction by quantifying the metabolites related to this enzyme. A simplified urease pretreatment of urine, gas chromatography-mass spectrometry, and stable isotope dilution method, developed for cutting-edge metabonomics, was further applied to quantify hypoxanthine, xanthine, urate, guanine and adenine in 100 microl or less urine or eluate from filter-paper-urine strips by additional use of stable isotope labeled guanine and adenine as the internal standards. In this procedure, the recoveries were above 93% and linearities (r(2)=0.9947-1.000) and CV values (below 7%) of the indicators were satisfactory. In four patients with proven LNS, hypoxanthine was elevated to 8.4-9.0 SD above the normal mean, xanthine to 4-6 SD above the normal mean, guanine to 1.9-3.7 SD, and adenine was decreased. Because of the allopurinol treatment for all the four patients, their level of urate was not elevated, orotate increased, and uracil was unchanged as compared with the control value. It was concluded that even in the presence of treatment with allopurinol, patients with LNS can be chemically diagnosed by this procedure. Abnormality in the levels of hypoxanthine and xanthine was quite prominent and n, the number of standard deviations above the normal mean, combined for the two, was above 12.9.


Subject(s)
Gas Chromatography-Mass Spectrometry/methods , Lesch-Nyhan Syndrome/diagnosis , Adult , Child, Preschool , Humans , Hypoxanthine Phosphoribosyltransferase/metabolism , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...