Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
Orphanet J Rare Dis ; 19(1): 197, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38741100

ABSTRACT

BACKGROUND: Rare diseases are often complex, chronic and many of them life-shortening. In Germany, healthcare for rare diseases is organized in expert centers for rare diseases. Most patients additionally have regional general practicioners and specialists for basic medical care. Thus, collaboration and information exchange between sectors is highly relevant. Our study focuses on the patient and caregiver perspective on intersectoral and interdisciplinary care between local healthcare professionals (HCPs) and centers for rare diseases in Germany. The aims were (1) to investigate patients' and caregivers' general experience of healthcare, (2) to analyse patients' and caregivers' perception of collaboration and cooperation between local healthcare professionals and expert centers for rare diseases and (3) to investigate patients' and caregivers' satisfaction with healthcare in the expert centers for rare diseases. RESULTS: In total 299 individuals of whom 176 were patients and 123 were caregivers to pediatric patients participated in a survey using a questionnaire comprising several instruments and constructs. Fifty participants were additionally interviewed using a semistructured guideline. Most patients reported to receive written information about their care, have a contact person for medical issues and experienced interdisciplinary exchange within the centers for rare diseases. Patients and caregivers in our sample were mainly satisfied with the healthcare in the centers for rare diseases. The qualitative interviews showed a rather mixed picture including experiences of uncoordinated care, low engagement and communication difficulties between professionals of different sectors. Patients reported several factors that influenced the organization and quality of healthcare e.g. engagement and health literacy in patients or engagement of HCPs. CONCLUSIONS: Our findings indicate the high relevance of transferring affected patients to specialized care as fast as possible to provide best medical treatment and increase patient satisfaction. Intersectoral collaboration should exceed written information exchange and should unburden patients of being and feeling responsible for communication between sectors and specialists. Results indicate a lack of inclusion of psychosocial aspects in routine care, which suggests opportunities for necessary improvements.


Subject(s)
Rare Diseases , Humans , Rare Diseases/therapy , Germany , Male , Female , Surveys and Questionnaires , Adult , Middle Aged , Intersectoral Collaboration , Health Personnel/psychology , Delivery of Health Care , Communication , Patient Satisfaction , Young Adult , Caregivers/psychology
2.
Kidney Int ; 105(5): 927-929, 2024 May.
Article in English | MEDLINE | ID: mdl-38642991

ABSTRACT

Hereditary hypophosphatemic rickets with hypercalciuria is an autosomal recessive phosphate-wasting disorder, associated with kidney and skeletal pathologies, which is caused by pathogenic variants of SLC34A3. In this issue, Zhu et al. describe a pooled analysis of 304 individuals carrying SLC34A3 variants. Their study underscores the complexity of hereditary hypophosphatemic rickets with hypercalciuria, as kidney and bone phenotypes generally do not coexist, heterozygous carriers of SLC34A3 variants also can be affected, and the response to oral phosphate supplementation is dependent on the genetic status.


Subject(s)
Familial Hypophosphatemic Rickets , Humans , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnosis , Familial Hypophosphatemic Rickets/genetics , Hypercalciuria/diagnosis , Hypercalciuria/genetics , Precision Medicine , Mutation , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics , Phosphates
3.
J Bone Miner Res ; 39(2): 116-129, 2024 Mar 22.
Article in English | MEDLINE | ID: mdl-38477742

ABSTRACT

Tumor-induced osteomalacia (TIO) poses a significant diagnostic challenge, leading to increased disease duration and patient burden also by missing clinical suspicion. Today, diagnosis of osteomalacia relies on invasive iliac crest biopsy, if needed. Therefore, a noninvasive method would be beneficial for patients with severe osteomalacia, such as TIO, to inform their clinical management and address specific needs, like estimating the regeneration capacity at high osteoid volumes (OVs) or the potential of a hungry bone syndrome after tumor removal. Furthermore, given the lack of comprehensive histological characterization of TIO, there is a need for additional tissue characterization. Therefore, our assessment encompassed iliac crest biopsies that were examined using quantitative electron backscattered microscopy, Raman spectroscopy, micro-computed tomography, and histology to analyze the biopsy tissue. Our clinical assessment encompassed DXA and high-resolution peripheral quantitative computed tomography (HR-pQCT) alongside with biochemical analyses and clinical evaluations. Combining imaging and clinical data, we established a model to predict the OV. We compared 9 TIO patients with 10 osteoporosis (OPO) patients and 10 healthy controls. Histological analyses confirmed a pronounced OV in TIO patients (OPO: 1.20% ± 1.23% vs TIO: 23.55% ± 12.23%, P < .0005), and spectroscopy revealed lower phosphate levels in TIO biopsies. By combining HR-pQCT and laboratory diagnostics, we developed a linear regression model to noninvasively predict the OV revealing significantly higher modeled OV/BVmodel values of 24.46% ± 14.22% for TIO compared to the control group (5.952% ± 3.44%, P ≤ .001). By combining laboratory diagnostics, namely, ALP and Tt.BMDRadius measured by HR-pQCT, we achieved the calculation of the virtual osteoid volume to bone volume ratio (OV/BVmodel) with a significant correlation to histology as well as reliable identification of TIO patients compared to OPO and control. This novel approach is potentially helpful for predicting OV by noninvasive techniques in diagnostic procedures and improving the clinical management of TIO.


Osteomalacia, a bone mineralization disease, results in soft bones due to a lack of calcium or phosphate. Tumor-induced osteomalacia (TIO) is an acquired and challenging form of osteomalacia due to low serum phosphate levels that often lead to prolonged patient suffering. Current diagnosis of osteomalacia involves surgical bone biopsies, but a noninvasive approach would be beneficial, improving clinical management and addressing specific needs like estimating the bone's quality and ability to recover. We used advanced techniques like electron microscopy, spectroscopy, and high-resolution CT to study bone samples from 9 TIO patients. Additionally, we assessed their bone health through sophisticated imaging and blood analyses. Microscopy confirmed huge amounts of soft bone tissue due to a severe mineralization defect. By combining imaging and blood analysis, we developed a noninvasive method to predict the amount of soft tissue (osteoid) to understand soft bones without the need for surgical interventions. In conclusion, our innovative approach, combining blood diagnostics (alkaline phosphatase) with total BMD from high-resolution 3D clinical imaging of the lower arm, allows us to predict the osteoid amount virtually. This method can also compare TIO patients with controls or those with osteoporosis and might be helpful in the future.


Subject(s)
Osteomalacia , Humans , Osteomalacia/diagnostic imaging , Osteomalacia/pathology , Female , Middle Aged , Male , Adult , Paraneoplastic Syndromes/diagnostic imaging , Paraneoplastic Syndromes/pathology , Aged , Ilium/pathology , Ilium/diagnostic imaging
4.
Calcif Tissue Int ; 113(6): 630-639, 2023 12.
Article in English | MEDLINE | ID: mdl-37980279

ABSTRACT

Tumor-induced osteomalacia (TIO) is an ultra-rare disease caused mostly by benign tumors that secrete fibroblast growth factor-23. Because of nonspecific symptoms, the diagnostic delay is long, and therapy can be challenging. Moreover, epidemiological data on TIO are scarce owing to its rarity. Therefore, this study aimed to quantify TIO's incidence rates and prevalence in Germany. Retrospective longitudinal and cross-sectional analyses were conducted using anonymized German claims data from the statutory health insurance (SHI) database. This database, which comprises the data of approximately 5 million insurants, is a representative sample of the German population and supports national projections. As there is no unique International Statistical Classification of Diseases and Related Health Problems (ICD) code for TIO, operational categories based on different surrogates were defined to determine the prevalence and incidence rates of TIO among probable patients. This study showed that TIO has a prevalence of (documented code, advanced imaging, medication, or tumor removal) 0.187 per 100,000 persons and an incidence rate of ≤ 0.094 per 100,000 person years. This analysis provides the first epidemiological insight into German patients with TIO. Despite the general limitations associated with the analysis of SHI claims data of ultra-rare diseases, we believe that this analysis provides a sound basis for further analysis, particularly with regard to the care situation of patients with TIO.


Subject(s)
Delayed Diagnosis , Osteomalacia , Humans , Retrospective Studies , Cross-Sectional Studies , Delayed Diagnosis/adverse effects , Osteomalacia/epidemiology , Osteomalacia/etiology , Germany/epidemiology
5.
Calcif Tissue Int ; 113(6): 597-608, 2023 12.
Article in English | MEDLINE | ID: mdl-37880520

ABSTRACT

In-vivo bone microstructure measured by high-resolution peripheral quantitative computed tomography (HR-pQCT) is gaining importance in research and clinical practice. Second-generation HR-pQCT (XCT2) shows improved image quality and shorter measurement duration compared to the first generation (XCT1). Predicting and understanding the occurrence of motion artifacts is crucial for clinical practice. We retrospectively analyzed data from HR-pQCT measurements at the distal radius and tibia of 1,000 patients (aged 20 to 89) evenly distributed between both generations of HR-pQCT. Motion artifacts were graded between 1 (no motion) and 5 (severe motion), with grades greater 3 considered unusable. Additionally, baseline characteristics and patients' muscle performance and balance were measured. Various group comparisons between the two generations of HR-pQCT and regression analyses between patient characteristics and motion grading were performed. The study groups of XCT1 and XCT2 did not differ by age (XCT1: 64.9 vs. XCT2: 63.8 years, p = 0.136), sex (both 74.5% females, p > 0.999), or BMI (both 24.2 kg/m2, p = 0.911) after propensity score matching. XCT2 scans exhibited significantly lower motion grading in both extremities compared to XCT1 (Radius: p < 0.001; Tibia: p = 0.002). In XCT2 motion-corrupted scans were more than halved at the radius (XCT1: 35.3% vs. XCT2: 15.5%, p < 0.001), and at the tibia the frequency of best image quality scans was increased (XCT1: 50.2% vs. XCT2: 63.7%, p < 0.001). The strongest independent predictor for motion-corrupted images is the occurrence of high motion grading at the other scanning site during the same consultation. The association between high motion grading in one scan and a corresponding high motion grading in another scan within the same session suggests a non-resting patient. Additionally, aged, female, and patients with smaller stature tend towards higher motion grading, requiring special attention to a correct extremity fixation.


Subject(s)
Bone Density , Tomography, X-Ray Computed , Humans , Female , Male , Cohort Studies , Propensity Score , Retrospective Studies , Bone Density/physiology , Tomography, X-Ray Computed/methods , Radius/diagnostic imaging , Tibia/diagnostic imaging , Tibia/physiology
6.
JBMR Plus ; 7(8): e10779, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37614308

ABSTRACT

Pregnancy- and lactation-associated osteoporosis (PLO) is a rare but clinically highly relevant condition, characterized by reduced bone mineral density (BMD) and acute onset of severe pain due to symptomatic bone marrow edema of the hip or vertebral and/or insufficiency fractures, among others. Previous reports showed a high frequency of hereditary bone disorders unmasked by PLO, predisposing for more severe forms. To date, no data on the risk for additional fractures during subsequent pregnancy in women with PLO and genetic bone disorder have been available. To address this question, we retrospectively analyzed the clinical, biochemical, and densitometric course of three women with a history of PLO and detected variants in WNT1 or LRP5 and subsequent pregnancies. Calcium homeostasis and bone turnover were optimized by basic treatment, and timely initiation of weaning was recommended. Teriparatide treatment for 12 months under strict contraception was initiated in one woman after the diagnosis of PLO. In none of the women did additional fractures or symptomatic bone marrow edemas occur, and BMD by dual-energy X-ray absorptiometry as bone microarchitecture by high-resolution peripheral quantitative computed tomography remained stable. In conclusion, this report expands the understanding of this rare but severe condition and helps to improve clinical counseling and management. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.

7.
J Bone Miner Res ; 38(9): 1334-1349, 2023 09.
Article in English | MEDLINE | ID: mdl-37554015

ABSTRACT

Isolated short stature, defined as short stature without any other abnormalities, is a common heterogeneous condition in children. Exome sequencing identified the homozygous nonsense variant c.1832G>A/p.(Trp611*) in TMCO3 in two sisters with isolated short stature. Radiological studies, biochemical measurements, assessment of the skeletal status, and three-dimensional bone microarchitecture revealed no relevant skeletal and bone abnormalities in both sisters. The homozygous TMCO3 variant segregated with short stature in the family. TMCO3 transcript levels were reduced by ~50% in leukocyte-derived RNA of both sisters compared with controls, likely due to nonsense-mediated mRNA decay. In primary urinary cells of heterozygous family members, we detected significantly reduced TMCO3 protein levels. TMCO3 is functionally uncharacterized. We ectopically expressed wild-type TMCO3 in HeLa and ATDC5 chondrogenic cells and detected TMCO3 predominantly at the Golgi apparatus, whereas the TMCO3W611* mutant did not reach the Golgi. Coordinated co-expression of TMCO3W611* -HA and EGFP in HeLa cells confirmed intrinsic instability and/or degradation of the mutant. Tmco3 is expressed in all relevant mouse skeletal cell types. Highest abundance of Tmco3 was found in chondrocytes of the prehypertrophic zone in mouse and minipig growth plates where it co-localizes with a Golgi marker. Knockdown of Tmco3 in differentiated ATDC5 cells caused reduced and increased expression of Pthlh and Ihh, respectively. Measurement of long bones in Tmco3tm1b(KOMP)Wtsi knockout mice revealed significant shortening of forelimbs and hindlimbs. TMCO3 is a potential member of the monovalent cation:proton antiporter 2 (CPA2) family. By in silico tools and homology modeling, TMCO3 is predicted to have an N-terminal secretory signal peptide, forms a dimer localized to the membrane, and is organized in a dimerization and a core domain. The core domain contains the CPA2 motif essential for K+ binding and selectivity. Collectively, our data demonstrate that loss of TMCO3 causes growth defects in both humans and mice. © 2023 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Dwarfism , Protons , Child , Humans , Animals , Mice , Swine , Antiporters , HeLa Cells , Swine, Miniature , Dwarfism/genetics , Golgi Apparatus
8.
Am J Hum Genet ; 110(9): 1470-1481, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37582359

ABSTRACT

Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.


Subject(s)
Hip Dislocation , Osteosclerosis , Tankyrases , Humans , Tankyrases/genetics , Tankyrases/metabolism , Axin Protein/genetics , Axin Protein/metabolism , Wnt Signaling Pathway/genetics , Osteosclerosis/genetics , beta Catenin/metabolism
9.
Sci Rep ; 13(1): 7196, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37137898

ABSTRACT

Across species, the skeletal system shares mutual functions, including the protection of inner organs, structural basis for locomotion, and acting as an endocrine organ, thus being of pivotal importance for survival. However, insights into skeletal characteristics of marine mammals are limited, especially in the growing skeleton. Harbor seals (Phoca vitulina) are common marine mammals in the North and Baltic Seas and are suitable indicators of the condition of their ecosystem. Here, we analyzed whole-body areal bone mineral density (aBMD) by dual-energy X-ray absorptiometry (DXA) and lumbar vertebrae by high-resolution peripheral quantitative computed tomography (HR-pQCT) in neonate, juvenile, and adult harbor seals. Along skeletal growth, an increase in two-dimensional aBMD by DXA was paralleled by three-dimensional volumetric BMD by HR-pQCT, which could be attributed to an increasing trabecular thickness while trabecular number remained constant. Strong associations were observed between body dimensions (weight and length) and aBMD and trabecular microarchitecture (R2 = 0.71-0.92, all p < 0.001). To validate the results of the DXA measurement (i.e., the standard method used worldwide to diagnose osteoporosis in humans), we performed linear regression analyses with the three-dimensional measurements from the HR-pQCT method, which revealed strong associations between the two imaging techniques (e.g., aBMD and Tb.Th: R2 = 0.96, p < 0.0001). Taken together, our findings highlight the importance of systematic skeletal investigations in marine mammals during growth, illustrating the high accuracy of DXA in this context. Regardless of the limited sample size, the observed trabecular thickening is likely to represent a distinct pattern of vertebral bone maturation. As differences in nutritional status, among other factors, are likely to affect skeletal health, it appears essential to routinely perform skeletal assessments in marine mammals. Placing the results in the context of environmental exposures may allow effective measures to protect their populations.


Subject(s)
Bone Density , Phoca , Adult , Animals , Infant, Newborn , Humans , Ecosystem , Absorptiometry, Photon/methods , Lumbar Vertebrae
10.
Foot Ankle Spec ; : 19386400221136757, 2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36418935

ABSTRACT

INTRODUCTION: Biomechanical studies have proved that locking plates have better primary stability besides versatility regarding fracture pattern while reducing bone contact and bridging the gap, whereas conventional nonlocking plates (plus lag screw) depend on bone-plate compression. The clinical benefit of locking plates over nonlocking plates remains unanswered, however. Therefore, this retrospective cohort study was set up to test the hypothesis that the use of locking plates for unstable ankle fractures will result in fewer re-displacements, superior bony healing, and functional and clinical outcomes better than observed in the nonlocking cohort. METHODS: Bimalleolar ankle fractures (AO 44-B2) without syndesmotic injury treated with either a locking or a nonlocking plate were included. Groups were compared for complications, bone healing, secondary dislocation, progressions of osteoarthritis, and clinical outcome using patient-reported outcome measures. RESULTS: Data revealed no clinical outcome differences (Olerud-Molander Ankle Score: nonlocking 88.2 ± 14.4, locking 88.8 ± 12.3, P = .69, robust two 1-sided test for equality (RTOST): P = .03; American Orthopaedic Foot and Ankle Score: nonlocking 91.2 ± 12.9, locking 91.8 ± 11.3, P = .96, RTOST: P = .04). Nevertheless, a significant postoperative progression of osteoarthritis was detected in both groups (P = .04). This was independent of implant (P = .16). Although difference was not significant, locking plates were preferred in older (P = .78) and sicker patients (P = .63) and in cases with severer osteoarthritis (P = .16), and were associated with a higher complication rate (P = .42) and secondary dislocation (nonlocking 9.4%, locking 18.2%; P = .42). Re-displacement, however, was not a compelling reason for revision. CONCLUSIONS: The present study shows statistically significant equality of both types of implants. Contrary to our expectation, locking plates seemed to be associated with a higher risk for re-displacement. Overall, the use of either locking or nonlocking plates for unstable AO 44-B2 fractures is safe and successful despite significant progression of osteoarthritis. LEVEL OF EVIDENCE: III, Retrospective observational cohort study.

11.
J Bone Miner Res ; 37(9): 1733-1749, 2022 09.
Article in English | MEDLINE | ID: mdl-35773783

ABSTRACT

Biallelic ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) deficiency induces vascular/soft tissue calcifications in generalized arterial calcification of infancy (GACI), and low bone mass with phosphate-wasting rickets in GACI survivors (autosomal hypophosphatemic rickets type-2). ENPP1 haploinsufficiency induces early-onset osteoporosis and mild phosphate wasting in adults. Both conditions demonstrate the unusual combination of reduced accrual of skeletal mineral, yet excess and progressive heterotopic mineralization. ENPP1 is the only enzyme that generates extracellular pyrophosphate (PPi), a potent inhibitor of both bone and heterotopic mineralization. Life-threatening vascular calcification in ENPP1 deficiency is due to decreased plasma PPi; however, the mechanism by which osteopenia results is not apparent from an understanding of the enzyme's catalytic activity. To probe for catalysis-independent ENPP1 pathways regulating bone, we developed a murine model uncoupling ENPP1 protein signaling from ENPP1 catalysis, Enpp1T238A mice. In contrast to Enpp1asj mice, which lack ENPP1, Enpp1T238A mice have normal trabecular bone microarchitecture and favorable biomechanical properties. However, both models demonstrate low plasma Pi and PPi, increased fibroblast growth factor 23 (FGF23), and by 23 weeks, osteomalacia demonstrating equivalent phosphate wasting in both models. Reflecting findings in whole bone, calvarial cell cultures from Enpp1asj mice demonstrated markedly decreased calcification, elevated transcription of Sfrp1, and decreased nuclear ß-catenin signaling compared to wild-type (WT) and Enpp1T238A cultures. Finally, the decreased calcification and nuclear ß-catenin signaling observed in Enpp1asj cultures was restored to WT levels by knockout of Sfrp1. Collectively, our findings demonstrate that catalysis-independent ENPP1 signaling pathways regulate bone mass via the expression of soluble Wnt inhibitors such as secreted frizzled-related protein 1 (SFRP1), whereas catalysis dependent pathways regulate phosphate homeostasis through the regulation of plasma FGF23. © 2022 American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Bone and Bones/physiology , Phosphoric Diester Hydrolases/metabolism , Pyrophosphatases/metabolism , Animals , Catalysis , Familial Hypophosphatemic Rickets , Fibroblast Growth Factors , Mammals/metabolism , Mice , Phosphates/metabolism , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics , Vascular Calcification , beta Catenin
12.
Orphanet J Rare Dis ; 17(1): 273, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35854274

ABSTRACT

BACKGROUND AND IMPORTANCE: Hearing loss (HL) has been sporadically described, but not well characterized, in Generalized Arterial Calcification of Infancy (GACI), a rare disease in which pathological calcification typically presents in infancy. OBJECTIVES: This study aims to describe the clinical audiologic and otologic features and potential etiology of hearing impairment in GACI and gain pathophysiological insight from a murine model of GACI. DESIGN: Cross-sectional cohort study of individuals with GACI. Murine ossicle micromorphology of the ENPP1asj/asj mutant compared to wild-type. SETTING: Clinical research hospital; basic science laboratory. PARTICIPANTS: Nineteen individuals with GACI who met clinical, biochemical, and genetic criteria for diagnosis. MAIN OUTCOMES AND MEASURES: Clinical, biochemical, and radiologic features associated with hearing status. RESULTS: Pure-tone thresholds could be established in 15 (n = 30 ears) of the 19 patients who underwent audiological assessments. The prevalence of HL was 50% (15/30) of ears, with conductive HL in 80% and sensorineural HL in 20%. In terms of patients with HL (n = 8), seven patients had bilateral HL and one patient had unilateral HL. Degree of HL was mild to moderate for 87% of the 15 ears with hearing loss. Of those patients with sufficient pure-tone and middle ear function data, 80% (8/10) had audiometric configurations suggestive of ossicular chain dysfunction (OCD). Recurrent episodes of otitis media (ROM) requiring pressure-equalizing tube placement were common. In patients who underwent cranial CT, 54.5% (6/11) had auricular calcification. Quantitative backscattered electron imaging (qBEI) of murine ossicles supports an OCD component of auditory dysfunction in GACI, suggesting loss of ossicular osteocytes without initiation of bone remodeling. CONCLUSIONS AND RELEVANCE: Hearing loss is common in GACI; it is most often conductive, and mild to moderate in severity. The etiology of HL is likely multifactorial, involving dysfunction of the ossicular chain and/or recurrent otitis media. Clinically, this study highlights the importance of early audiologic and otologic evaluation in persons with GACI. Novel findings of high rates of OCD and ROM may inform management, and in cases of unclear HL etiology, dedicated temporal bone imaging should be considered.


Subject(s)
Hearing Loss , Otitis Media , Animals , Cross-Sectional Studies , Hearing , Hearing Loss/diagnosis , Hearing Loss/genetics , Humans , Mice , Otitis Media/complications , Vascular Calcification
13.
Osteoporos Int ; 33(10): 2177-2184, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35751664

ABSTRACT

This study examined the effects of denosumab compared to bisphosphonates and vitamin D alone on muscle performance in patients with low BMD. While grip force improved in both the denosumab and bisphosphonate group, a superior increase in chair rising test force was observed in the denosumab group. INTRODUCTION: The aim of this study was to investigate the effect of the anti-resorptive agent denosumab (Dmab) on upper and lower limb muscle performance compared to bisphosphonate (BP) treatment and vitamin D supplementation alone (i.e., basic therapy) in patients with low BMD. METHODS: This retrospective, propensity score-matched (sex, age, BMI, follow-up time) cohort study included 150 osteopenic or osteoporotic patients receiving basic (n = 60), BP (n = 30) or Dmab (n = 60) therapy. All patients underwent a musculoskeletal assessment at baseline and follow-up, including DXA, laboratory bone metabolism parameters, grip force, and chair rising test mechanography. Mean annual percentage changes were calculated and compared between study groups. RESULTS: After a mean follow-up period of 17.6 ± 9.0 months, a significantly higher increase in grip force in both the Dmab (p < 0.001) and BP group (p = 0.001) compared to the vitamin D group was observed (vitamin D = - 6.1 ± 10.2%; BP = + 0.8 ± 8.2%; Dmab = + 5.1 ± 25.5%). The Dmab group showed a significantly higher increase in chair rising test force compared to the BP group (vitamin D = + 5.8 ± 12.7%; BP = + 0.9 ± 8.6%; Dmab = + 8.2 ± 14.4%; Dmab vs. BP p = 0.03). Neither the changes in BMD nor in bone metabolic parameters were associated with changes in muscle performance. CONCLUSION: Dmab resulted in increased muscle strength in the upper and lower limbs, indicating systemic rather than site-specific effects as compared to BP. Based on these findings, Dmab might be favored over other osteoporosis treatments in patients with low BMD and poor muscle strength.


Subject(s)
Bone Density Conservation Agents , Denosumab , Bone Density , Bone Density Conservation Agents/pharmacology , Bone Density Conservation Agents/therapeutic use , Cohort Studies , Denosumab/pharmacology , Denosumab/therapeutic use , Diphosphonates , Humans , Muscles , Propensity Score , Retrospective Studies , Vitamin D/pharmacology , Vitamin D/therapeutic use
14.
J Bone Miner Res ; 37(8): 1580-1591, 2022 08.
Article in English | MEDLINE | ID: mdl-35689455

ABSTRACT

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) represents an FGF23-independent disease caused by biallelic variants in the solute carrier family 34-member 3 (SLC34A3) gene. HHRH is characterized by chronic hypophosphatemia and an increased risk for nephrocalcinosis and rickets/osteomalacia, muscular weakness, and secondary limb deformity. Biochemical changes, but no relevant skeletal changes, have been reported for heterozygous SLC34A3 carriers. Therefore, we assessed the characteristics of individuals with biallelic and monoallelic SLC34A3 variants. In 8 index patients and 5 family members, genetic analysis was performed using a custom gene panel. The skeletal assessment comprised biochemical parameters, areal bone mineral density (aBMD), and bone microarchitecture. Pathogenic SLC34A3 variants were revealed in 7 of 13 individuals (2 homozygous, 5 heterozygous), whereas 3 of 13 carried monoallelic variants of unknown significance. Whereas both homozygous individuals had nephrocalcinosis, only one displayed a skeletal phenotype consistent with HHRH. Reduced to low-normal phosphate levels, decreased tubular reabsorption of phosphate (TRP), and high-normal to elevated values of 1,25-OH2 -D3 accompanied by normal cFGF23 levels were revealed independently of mutational status. Interestingly, individuals with nephrocalcinosis showed significantly increased calcium excretion and 1,25-OH2 -D3 levels but normal phosphate reabsorption. Furthermore, aBMD Z-score <-2.0 was revealed in 4 of 8 heterozygous carriers, and HR-pQCT analysis showed a moderate decrease in structural parameters. Our findings highlight the clinical relevance also of monoallelic SLC34A3 variants, including their potential skeletal impairment. Calcium excretion and 1,25-OH2 -D3 levels, but not TRP, were associated with nephrocalcinosis. Future studies should investigate the effects of distinct SLC34A3 variants and optimize treatment and monitoring regimens to prevent nephrocalcinosis and skeletal deterioration. © 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Familial Hypophosphatemic Rickets , Nephrocalcinosis , Calcium/therapeutic use , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnostic imaging , Familial Hypophosphatemic Rickets/genetics , Humans , Hypercalciuria/complications , Hypercalciuria/drug therapy , Hypercalciuria/genetics , Nephrocalcinosis/genetics , Phosphates , Sodium-Phosphate Cotransporter Proteins, Type IIc/genetics
15.
J Clin Endocrinol Metab ; 107(7): e3048-e3057, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35276006

ABSTRACT

CONTEXT: Many different inherited and acquired conditions can result in premature bone fragility/low bone mass disorders (LBMDs). OBJECTIVE: We aimed to elucidate the impact of genetic testing on differential diagnosis of adult LBMDs and at defining clinical criteria for predicting monogenic forms. METHODS: Four clinical centers broadly recruited a cohort of 394 unrelated adult women before menopause and men younger than 55 years with a bone mineral density (BMD) Z-score < -2.0 and/or pathological fractures. After exclusion of secondary causes or unequivocal clinical/biochemical hallmarks of monogenic LBMDs, all participants were genotyped by targeted next-generation sequencing. RESULTS: In total, 20.8% of the participants carried rare disease-causing variants (DCVs) in genes known to cause osteogenesis imperfecta (COL1A1, COL1A2), hypophosphatasia (ALPL), and early-onset osteoporosis (LRP5, PLS3, and WNT1). In addition, we identified rare DCVs in ENPP1, LMNA, NOTCH2, and ZNF469. Three individuals had autosomal recessive, 75 autosomal dominant, and 4 X-linked disorders. A total of 9.7% of the participants harbored variants of unknown significance. A regression analysis revealed that the likelihood of detecting a DCV correlated with a positive family history of osteoporosis, peripheral fractures (> 2), and a high normal body mass index (BMI). In contrast, mutation frequencies did not correlate with age, prevalent vertebral fractures, BMD, or biochemical parameters. In individuals without monogenic disease-causing rare variants, common variants predisposing for low BMD (eg, in LRP5) were overrepresented. CONCLUSION: The overlapping spectra of monogenic adult LBMD can be easily disentangled by genetic testing and the proposed clinical criteria can help to maximize the diagnostic yield.


Subject(s)
Osteogenesis Imperfecta , Osteoporosis , Spinal Fractures , Adult , Bone Density/genetics , Female , Genotype , High-Throughput Nucleotide Sequencing , Humans , Male , Mutation , Osteogenesis Imperfecta/diagnosis , Osteogenesis Imperfecta/genetics , Osteoporosis/diagnosis , Osteoporosis/genetics
16.
Z Rheumatol ; 81(3): 182-188, 2022 Apr.
Article in German | MEDLINE | ID: mdl-35103802

ABSTRACT

Tumor-induced osteomalacia (TIO) or oncogenic osteomalacia (OOM) is a rare paraneoplastic renal phosphate wasting syndrome. The disease is mostly triggered by small, benign mesenchymal tumors that express somatostatin receptors (SSTR) and produce excessive levels of fibroblast growth factor 23 (FGF 23) or other phosphatonins. These reduce the phosphate back resorption in the proximal tubules of the kidneys, thereby causing hypophosphatemia and lead to an absolute or relatively low calcitriol serum concentration. The main symptoms include muscle weakness, bone pain and recurrent insufficiency fractures secondary to sometimes pronounced osteomalacia. The suspected diagnosis can only be confirmed by determination of the phosphate level. It can often take years before the tumor is successfully localized. The necessary tumor localization is often the most difficult step in the treatment before the OOM can be curatively treated by open surgical resection of the tumor. In recent years new approaches for faster tumor localization and treatment of the tumor have been developed. Positron emission tomography (PET) in co-registration with computed tomography (68Ga-DOTA-TATE PET/CT) is currently the most sensitive imaging methodology for tumor detection. The application of the monoclonal FGF 23 antibody burosumab represents a promising new option in the treatment of inoperable adult OOM.


Subject(s)
Neoplasms , Osteomalacia , Paraneoplastic Syndromes , Adult , Fibroblast Growth Factors , Humans , Osteomalacia/diagnosis , Osteomalacia/etiology , Osteomalacia/therapy , Paraneoplastic Syndromes/diagnosis , Paraneoplastic Syndromes/etiology , Paraneoplastic Syndromes/therapy , Positron Emission Tomography Computed Tomography
17.
Environ Int ; 159: 107014, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34883460

ABSTRACT

Harbour porpoises are under pressure from increasing human activities. This includes the detonation of ammunition that was dumped in large amounts into the sea during and after World War II. In this context, forty-two British ground mines from World War II were cleared by means of blasting in the period from 28 to 31 August 2019 by a NATO unit in the German Exclusive Economic Zone within the marine protected area of Fehmarn Belt in the Baltic Sea, Germany. Between September and November 2019, 24 harbour porpoises were found dead in the period after those clearing events along the coastline of the federal state of Schleswig-Holstein and were investigated for direct and indirect effects of blast injury. Health evaluations were conducted including examinations of the brain, the air-filled (lungs and gastrointestinal tract) and acoustic organs (melon, acoustic fat in the lower jaw, ears and their surrounding tissues). The bone structure of the tympano-periotic complexes was examined using high-resolution peripheral quantitative computed tomography (HR-pQCT). In 8/24 harbour porpoises, microfractures of the malleus, dislocation of middle ear bones, bleeding, and haemorrhages in the melon, lower jaw and peribullar acoustic fat were detected, suggesting blast injury. In addition, one bycaught animal and another porpoise with signs of blunt force trauma also showed evidence of blast injury. The cause of death of the other 14 animals varied and remained unclear in two individuals. Due to the vulnerability and the conservation status of harbour porpoise populations in the Baltic Sea, noise mitigation measures must be improved to prevent any risk of injury. The data presented here highlight the importance of systematic investigations into the acute and chronic effects of blast and acoustic trauma in harbour porpoises, improving the understanding of underwater noise effects and herewith develop effective measures to protect the population level.


Subject(s)
Blast Injuries , Phocoena , Porpoises , Animals , Blast Injuries/etiology , Blast Injuries/veterinary , Explosions , Lung , World War II
18.
Bone Res ; 9(1): 48, 2021 Nov 10.
Article in English | MEDLINE | ID: mdl-34759273

ABSTRACT

The recent identification of homozygous WNT1 mutations in individuals with osteogenesis imperfecta type XV (OI-XV) has suggested that WNT1 is a key ligand promoting the differentiation and function of bone-forming osteoblasts. Although such an influence was supported by subsequent studies, a mouse model of OI-XV remained to be established. Therefore, we introduced a previously identified disease-causing mutation (G177C) into the murine Wnt1 gene. Homozygous Wnt1G177C/G177C mice were viable and did not display defects in brain development, but the majority of 24-week-old Wnt1G177C/G177C mice had skeletal fractures. This increased bone fragility was not fully explained by reduced bone mass but also by impaired bone matrix quality. Importantly, the homozygous presence of the G177C mutation did not interfere with the osteoanabolic influence of either parathyroid hormone injection or activating mutation of LRP5, the latter mimicking the effect of sclerostin neutralization. Finally, transcriptomic analyses revealed that short-term administration of WNT1 to osteogenic cells induced not only the expression of canonical WNT signaling targets but also the expression of genes encoding extracellular matrix modifiers. Taken together, our data demonstrate that regulating bone matrix quality is a primary function of WNT1. They further suggest that individuals with WNT1 mutations should profit from existing osteoanabolic therapies.

19.
J Bone Miner Res ; 36(12): 2317-2328, 2021 12.
Article in English | MEDLINE | ID: mdl-34523743

ABSTRACT

X-linked hypophosphatemia (XLH) is a hereditary musculoskeletal disorder caused by loss-of-function mutations in the PHEX gene. In XLH, increased circulating fibroblast growth factor 23 (FGF23) levels cause renal phosphate wasting and low concentrations of 1,25-dihydroxyvitamin D, leading to an early clinical manifestation of rickets. Importantly, hearing loss is commonly observed in XLH patients. We present here data from two XLH patients with marked conductive hearing loss. To decipher the underlying pathophysiology of hearing loss in XLH, we utilized the Hyp mouse model of XLH and measured auditory brain stem responses (ABRs) and distortion product otoacoustic emissions (DPOAEs) to functionally assess hearing. As evidenced by the increased ABR/DPOAE threshold shifts in the mid-frequency range, these measurements indicated a predominantly conductive hearing loss in Hyp mice compared to wild-type (WT) mice. Therefore, we carried out an in-depth histomorphometric and scanning electron microscopic analysis of the auditory ossicles. Quantitative backscattered electron imaging (qBEI) indicated a severe hypomineralization of the ossicles in Hyp mice, evidenced by lower calcium content (CaMean) and higher void volume (ie, porosity) compared to WT mice. Histologically, voids correlated with unmineralized bone (ie, osteoid), and the osteoid volume per bone volume (OV/BV) was markedly higher in Hyp mice than WT mice. The density of osteocyte lacunae was lower in Hyp mice than in WT mice, whereas osteocyte lacunae were enlarged. Taken together, our findings highlight the importance of ossicular mineralization for hearing conduction and point toward the potential benefit of improving mineralization to prevent hearing loss in XLH. © 2021 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).


Subject(s)
Ear Ossicles/pathology , Familial Hypophosphatemic Rickets , Hearing Loss, Conductive , Animals , Disease Models, Animal , Familial Hypophosphatemic Rickets/complications , Familial Hypophosphatemic Rickets/diagnostic imaging , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factor-23 , Humans , Mice , PHEX Phosphate Regulating Neutral Endopeptidase
20.
Bone ; 153: 116111, 2021 12.
Article in English | MEDLINE | ID: mdl-34252603

ABSTRACT

Awareness for hypophosphatemic rickets has increased in the last years, based on the availability of specific medical treatments. Autosomal recessive hypophosphatemic rickets type 2 (ARHR2) is a rare form of hypophosphatemic rickets, which is known to develop in survivors of generalized arterial calcification of infancy (GACI). Both disorders are based on a deficiency of ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) and present with a high clinical variability and a lack of a phenotype-genotype association. ARHR2 is characterized by phosphate wasting due to elevated fibroblast growth factor 23 (FGF23) levels and might represent a response of the organism to minimize ectopic calcification in individuals with ENPP1-deficiency. This report reviews the recent clinical and preclinical data on this ultra-rare disease in childhood.


Subject(s)
Familial Hypophosphatemic Rickets , Rickets, Hypophosphatemic , Familial Hypophosphatemic Rickets/genetics , Fibroblast Growth Factor-23 , Fibroblast Growth Factors , Humans , Phosphates , Phosphoric Diester Hydrolases/genetics , Pyrophosphatases/genetics , Rickets, Hypophosphatemic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...