Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Neurosci ; 16: 769347, 2022.
Article in English | MEDLINE | ID: mdl-35197825

ABSTRACT

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the most common form of dementia in aged populations. A substantial amount of data demonstrates that chronic neuroinflammation can accelerate neurodegenerative pathologies. In AD, chronic neuroinflammation results in the upregulation of cyclooxygenase and increased production of prostaglandin H2, a precursor for many vasoactive prostanoids. While it is well-established that many prostaglandins can modulate the progression of neurodegenerative disorders, the role of prostacyclin (PGI2) in the brain is poorly understood. We have conducted studies to assess the effect of elevated prostacyclin biosynthesis in a mouse model of AD. Upregulated prostacyclin expression significantly worsened multiple measures associated with amyloid-ß (Aß) disease pathologies. Mice overexpressing both Aß and PGI2 exhibited impaired learning and memory and increased anxiety-like behavior compared with non-transgenic and PGI2 control mice. PGI2 overexpression accelerated the development of Aß accumulation in the brain and selectively increased the production of soluble Aß42. PGI2 damaged the microvasculature through alterations in vascular length and branching; Aß expression exacerbated these effects. Our findings demonstrate that chronic prostacyclin expression plays a novel and unexpected role that hastens the development of the AD phenotype.

2.
Behav Brain Res ; 327: 94-97, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28359885

ABSTRACT

Women use methamphetamine more frequently than men and are more vulnerable to its negative psychological effects. Rodent models have been an essential tool for evaluating the sex-dependent effects of psychostimulants; however, evidence of sex differences in the behavioral responses to methamphetamine in mice is lacking. In the present study, we investigated acute methamphetamine-induced (1mg/kg and 4mg/kg) locomotor activation in female and male BALB/c mice. We also evaluated whether basal locomotor activity was associated with the methamphetamine-induced locomotor response. The results indicated that female BALB/c mice displayed enhanced methamphetamine-induced locomotor activity compared to males, while basal locomotor activity was positively correlated with methamphetamine-induced activity in males, but not females. This study is the first to show sex-dependent locomotor effects of methamphetamine in BALB/c mice. Our observations emphasize the importance of considering sex when assessing behavioral responses to methamphetamine.


Subject(s)
Central Nervous System Stimulants/pharmacology , Methamphetamine/pharmacology , Motor Activity/drug effects , Motor Activity/physiology , Sex Characteristics , Animals , Dose-Response Relationship, Drug , Female , Linear Models , Locomotion/drug effects , Male , Mice, Inbred BALB C
3.
Mol Neurodegener ; 9: 54, 2014 Nov 28.
Article in English | MEDLINE | ID: mdl-25432085

ABSTRACT

BACKGROUND: Recent epidemiological evidence suggests that modifying lifestyle by increasing physical activity could be a non-pharmacological approach to improving symptoms and slowing disease progression in Alzheimer's disease and other tauopathies. Previous studies have shown that exercise reduces tau hyperphosphorylation, however, it is not known whether exercise reduces the accumulation of soluble or insoluble tau aggregates and neurofibrillary tangles, which are both neuropathological hallmarks of neurodegenerative tauopathy. In this study, 7-month old P301S tau transgenic mice were subjected to 12-weeks of forced treadmill exercise and evaluated for effects on motor function and tau pathology at 10 months of age. RESULTS: Exercise improved general locomotor and exploratory activity and resulted in significant reductions in full-length and hyperphosphorylated tau in the spinal cord and hippocampus as well as a reduction in sarkosyl-insoluble AT8-tau in the spinal cord. Exercise did not attenuate significant neuron loss in the hippocampus or cortex. Key proteins involved in autophagy-microtubule-associated protein 1A/1B light chain 3 and p62/sequestosome 1 -were also measured to assess whether autophagy is implicated in the exercised-induced reduction of aggregated tau protein. There were no significant effects of forced treadmill exercise on autophagy protein levels in P301S mice. CONCLUSIONS: Our results suggest that forced treadmill exercise differently affects the brain and spinal cord of aged P301S tau mice, with greater benefits observed in the spinal cord versus the brain. Our work adds to the growing body of evidence that exercise is beneficial in tauopathy, however these benefits may be more limited at later stages of disease.


Subject(s)
Alzheimer Disease/metabolism , Tauopathies/metabolism , tau Proteins/genetics , Animals , Brain/metabolism , Disease Models, Animal , Mice, Transgenic , Nerve Degeneration/pathology , Physical Conditioning, Animal , Spinal Cord/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...