Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Biol ; 27(10): 1491-1497.e4, 2017 May 22.
Article in English | MEDLINE | ID: mdl-28479325

ABSTRACT

Proper cell size is essential for cellular function. Nonetheless, despite more than 100 years of work on the subject, the mechanisms that maintain cell-size homeostasis are largely mysterious [1]. Cells in growing populations maintain cell size within a narrow range by coordinating growth and division. Bacterial and eukaryotic cells both demonstrate homeostatic size control, which maintains population-level variation in cell size within a certain range and returns the population average to that range if it is perturbed [1, 2]. Recent work has proposed two different strategies for size control: budding yeast has been proposed to use an inhibitor-dilution strategy to regulate size at the G1/S transition [3], whereas bacteria appear to use an adder strategy, in which a fixed amount of growth each generation causes cell size to converge on a stable average [4-6]. Here we present evidence that cell size in the fission yeast Schizosaccharomyces pombe is regulated by a third strategy: the size-dependent expression of the mitotic activator Cdc25. cdc25 transcript levels are regulated such that smaller cells express less Cdc25 and larger cells express more Cdc25, creating an increasing concentration of Cdc25 as cells grow and providing a mechanism for cells to trigger cell division when they reach a threshold concentration of Cdc25. Because regulation of mitotic entry by Cdc25 is well conserved, this mechanism may provide a widespread solution to the problem of size control in eukaryotes.


Subject(s)
Mitosis , Phosphoprotein Phosphatases/metabolism , Schizosaccharomyces pombe Proteins/metabolism , Schizosaccharomyces/cytology , Schizosaccharomyces/metabolism , Cell Cycle Proteins/metabolism , G2 Phase , Interphase
2.
Yeast ; 34(8): 323-334, 2017 08.
Article in English | MEDLINE | ID: mdl-28423198

ABSTRACT

The fission yeast Schizosaccharomyces pombe lacks a diverse toolkit of inducible promoters for experimental manipulation. Available inducible promoters suffer from slow induction kinetics, limited control of expression levels and/or a requirement for defined growth medium. In particular, no S. pombe inducible promoter systems exhibit a linear dose-response, which would allow expression to be tuned to specific levels. We have adapted a fast, orthogonal promoter system with a large dynamic range and a linear dose response, based on ß-estradiol-regulated function of the human oestrogen receptor, for use in S. pombe. We show that this promoter system, termed Z3 EV, turns on quickly, can reach a maximal induction of 20-fold, and exhibits a linear dose response over its entire induction range, with few off-target effects. We demonstrate the utility of this system by regulating the mitotic inhibitor Wee1 to create a strain in which cell size is regulated by ß-estradiol concentration. This promoter system will be of great utility for experimentally regulating gene expression in fission yeast. Copyright © 2017 John Wiley & Sons, Ltd.


Subject(s)
Estradiol/metabolism , Gene Expression Regulation, Fungal , Genetics, Microbial/methods , Molecular Biology/methods , Promoter Regions, Genetic/drug effects , Schizosaccharomyces/drug effects , Transcriptional Activation/drug effects , Cell Cycle Proteins/biosynthesis , Cell Cycle Proteins/genetics , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Protein-Tyrosine Kinases/biosynthesis , Protein-Tyrosine Kinases/genetics , Schizosaccharomyces/cytology , Schizosaccharomyces/genetics , Schizosaccharomyces/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...